HQ

Cho điểm M ở ngoài (O,R). Vẽ tiếp tuyến MA với (O) tại tiếp điểm A. Vẽ dây AB ┴ OM tại H.
a) Chứng minh rằng MB là tiếp tuyến của (O).
b) Đoạn thẳng OM cắt (O) tại I. Chứng minh rằng I là tâm của đường tròn nội tiếp của tam giác MAB.
c) Vẽ đường kính BC của (O). Chứng minh rằng: AC.MO = 2R2.
d) Cho OM = 3R, chứng minh rằng: tích hai bán kính đường tròn ngoại tiếp và nội tiếp của tam giác MAB bằng R2 .

NT
22 tháng 12 2021 lúc 10:56

a: Xét ΔOAM và ΔOBM có

OA=OB

\(\widehat{AOM}=\widehat{BOM}\)

OM chung

Do đó: ΔOAM=ΔOBM

Suy ra: MB là tiếp tuyến của (O)

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
NQ
Xem chi tiết
NT
Xem chi tiết
NN
Xem chi tiết
AN
Xem chi tiết
EM
Xem chi tiết
H24
Xem chi tiết
NV
Xem chi tiết
VT
Xem chi tiết