Ôn tập chương 1: Căn bậc hai. Căn bậc ba

QL

Cho \(\left(x+\sqrt{x^2+2007}\right)\left(y+\sqrt{y^2+2007}\right)=2007\). Tính S = x + y.

AH
12 tháng 6 2018 lúc 16:58

Lời giải:
Ta có:

\((x+\sqrt{x^2+2007})(y+\sqrt{y^2+2007})=2007\)

Nhân \(x-\sqrt{x^2+2007}\) vào 2 vế:

\(\Rightarrow (x-\sqrt{x^2+2007})(x+\sqrt{x^2+2007})(y+\sqrt{y^2+2007})=2007(x-\sqrt{x^2+2007})\)

\(\Leftrightarrow [x^2-(x^2+2007)](y+\sqrt{y^2+2007})=2007(x-\sqrt{x^2+2007})\)

\(\Leftrightarrow -2007(y+\sqrt{y^2+2007})=2007(x-\sqrt{x^2+2007})\)

\(\Leftrightarrow -(y+\sqrt{y^2+2007})=x-\sqrt{x^2+2007}\)

\(\Leftrightarrow x+y+\sqrt{y^2+2007}-\sqrt{x^2+2007}=0(1)\)

Hoàn toàn tương tự, nhân \(y-\sqrt{y^2+2007}\) vào 2 vế:

\(x+y+\sqrt{x^2+2007}-\sqrt{y^2+2007}=0(2)\)

Từ (1);(2) suy ra: \(2(x+y)=0+0=0\Rightarrow S=x+y=0\)

Bình luận (0)

Các câu hỏi tương tự
AA
Xem chi tiết
VC
Xem chi tiết
QL
Xem chi tiết
PL
Xem chi tiết
TT
Xem chi tiết
VC
Xem chi tiết
NH
Xem chi tiết
TD
Xem chi tiết
H24
Xem chi tiết