§1. Bất đẳng thức

DD

Cho \(\left\{{}\begin{matrix}a,b,c>0\\a+b+c=1\end{matrix}\right.\) . Chứng minh rằng \(a^2b+b^2c+c^2a\le\frac{4}{27}\)

H24
8 tháng 2 2020 lúc 19:58

Cách khác:

Ta chứng minh BĐT mạnh hơn sau đây: \(4\left(x+y+z\right)^3\ge27\left(x^2y+y^2z+z^2x+xyz\right)\) (sorry em quen gõ x, y, z rồi nha!)

Do a, b, c có vai trò hoán vị vòng quanh, không mất tính tổng quát, giả sử:

Hướng 1:

\(x=mid\left\{x,y,z\right\}\)

\(VT-VP=\left(4y+4z+x\right)\left(y+z-2x\right)^2-27y\left(x-y\right)\left(x-z\right)\ge0\)

Hướng 2:

\(y=\min\left\{\,x,\,y,\,z\right\}\)

\(VT-VP=\frac{27y(y-z)^2 + (4x+16z -11y)(y+z-2x)^2}{4} \geq 0\)

P/s: Đây là câu 2 trong chuyên mục của em: Câu hỏi của tth - Toán lớp 9, đã có đáp án.

Đẳng thức xảy ra khi \(\left(x;y;z\right)=\left(0;\frac{1}{3};\frac{2}{3}\right)\)

Bình luận (0)
 Khách vãng lai đã xóa
DD
8 tháng 2 2020 lúc 19:18

Mysterious Person

Bình luận (0)
 Khách vãng lai đã xóa
NL
8 tháng 2 2020 lúc 19:41

Giả sử \(b=mid\left\{a;b;c\right\}\)

\(\Rightarrow\left(b-a\right)\left(b-c\right)\le0\Leftrightarrow b^2+ac\le ab+bc\)

\(\Leftrightarrow b^2c+ac^2\le bc^2+abc\Leftrightarrow a^2b+b^2c+c^2a\le a^2b+bc^2+abc\)

\(\Leftrightarrow a^2b+b^2c+c^2a\le a^2b+bc^2+2abc=b\left(a+c\right)^2=b\left(a+c\right)\left(a+c\right)\)

\(\Leftrightarrow a^2b+b^2c+c^2a\le\frac{1}{54}\left(2b+2a+2c\right)^3=\frac{4}{27}\)

Dấu "=" xảy ra ra khi \(\left(a;b;c\right)=\left(0;\frac{1}{3};\frac{2}{3}\right)\) và hoán vị

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
BH
Xem chi tiết
NC
Xem chi tiết
AD
Xem chi tiết
MH
Xem chi tiết
CC
Xem chi tiết
AR
Xem chi tiết
MM
Xem chi tiết
VH
Xem chi tiết
AR
Xem chi tiết