§1. Bất đẳng thức

AD

cho \(\left\{{}\begin{matrix}a,b,c>0\\a+b+c\le\dfrac{3}{2}\end{matrix}\right.\)

tìm \(MinS=\sqrt{a^2+\dfrac{1}{b^2}}+\sqrt{b^2+\dfrac{1}{c^2}}+\sqrt{c^2+\dfrac{1}{a^2}}\)

 

TH
14 tháng 2 2021 lúc 9:43

Lâu rồi không lên Hoc24

Áp dụng bất đẳng thức Minkowski, Schwarz và AM - GM ta có:

\(S\ge\sqrt{\left(a+b+c\right)^2+\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)^2}\ge\sqrt{\left(a+b+c\right)^2+\left(\dfrac{9}{a+b+c}\right)^2}=\sqrt{\left[\left(a+b+c\right)^2+\dfrac{81}{16\left(a+b+c\right)^2}\right]+\dfrac{81.15}{16\left(a+b+c\right)^2}}\ge\sqrt{\dfrac{9}{2}+\dfrac{135}{4}}=\sqrt{\dfrac{153}{4}}=\dfrac{3\sqrt{17}}{2}\).

Bình luận (1)
AD
14 tháng 2 2021 lúc 8:49

undefined

Sau khi chọn đc hệ số điểm rơi là 16 thì cơ sở nào tách tiếp ra 16 số rồi áp dụng cosi nữa vậy ạ??

 

 

Bình luận (1)

Các câu hỏi tương tự
H24
Xem chi tiết
MH
Xem chi tiết
PO
Xem chi tiết
HD
Xem chi tiết
PC
Xem chi tiết
PT
Xem chi tiết
PL
Xem chi tiết
VP
Xem chi tiết
DH
Xem chi tiết