Bài 5: Khoảng cách

MN

Cho lăng trụ đứng ABC.A'B'C' đáy là tam giác vuông tại B; BA = BC= a, \(\left(\widehat{A'B;\left(ABC\right)}\right)\) = 600. Tính d(A'B; AC')

NL
27 tháng 1 2021 lúc 23:37

\(\widehat{A'BA}=60^0\Rightarrow AA'=AB.tan60^0=a\sqrt{3}\)

(Lại 1 bài mà sử dụng tọa độ hóa sẽ cho kết quả cực kì nhanh chóng).

Lớp 11 thì chắc phải dựng hình:

Trong mp (A'B'C'), qua C' kẻ đường thẳng song song A'B', qua B' kẻ đường thẳng song song A'C', hai đường thẳng này cắt nhau tại D'

\(\Rightarrow AC'||BD'\) (do tứ giác ABD'C' là hình bình hành)

\(\Rightarrow d\left(AC';A'B\right)=d\left(AC';\left(A'BD'\right)\right)=d\left(C';\left(A'BD'\right)\right)\)

Gọi giao điểm của A'D' và B'D' là O \(\Rightarrow OB'=OC'\) theo t/c 2 đường chéo hbh

\(\Rightarrow d\left(C';\left(A'BD'\right)\right)=d\left(B';\left(A'BD'\right)\right)\)

Quy được về 1 bài tính khoảng cách cơ bản: tứ diện B.A'B'D' có \(BB'\perp\left(A'B'D'\right)\) , tìm k/c từ B' đến mp (A'BD')

Lần lượt kẻ B'H vuông góc A'D' và B'K vuông góc BH thì B'K là k/c cần tìm

Bạn tự tính toán nốt nhé

Bình luận (0)

Các câu hỏi tương tự
KR
Xem chi tiết
NK
Xem chi tiết
TA
Xem chi tiết
LT
Xem chi tiết
HM
Xem chi tiết
HM
Xem chi tiết
HM
Xem chi tiết
HM
Xem chi tiết
HM
Xem chi tiết