a)Cho tam giác AEF có PQ//EF, biết DF=24cm, QF=15cm, DP=6,3cm. Tính PE b)cho tam giác MNK trên đoạn MN lấy điểm E, trên đoạn NK lấy điểm F sao cho EF//MK. Biết NE=5cm,MN=7,5cm, FK=2cm. Tính NF
Bài 4:Cho tam giác ABC có AB = 6cm, AC = 8cm , BC = 10cm. Lấy điểm D trên AB sao cho AD = 2cm. Qua D vẽ đường thẳng song song với BC cắt AC tại E. 1) Tính AE. 2) Qua E vẽ đường thẳng song song với AB và cắt BC tại F. Tính BF, DE. 3) Tính và so sánh các tỉ số : AD/AB , AE/AC , DE/BC
Cho hình thang ABCD, AB // BC. I là giao của hai đường chéo. Qua I vẽ đường thẳng song song với hai đáy cắt AD tại E , BC tại F.
a, Chứng minh IE = IF
b, Chung minh \(\dfrac{1}{AB}+\dfrac{1}{CD}=\dfrac{1}{IE}\)
c, Chứng minh \(\dfrac{2}{EF}=\dfrac{1}{AB}+\dfrac{1}{CD}\)
CHO HÌNH THANG ABCD (AB//CD).GỌI MLAF TRUNG ĐIỂM CD .AM CẮT BD TẠI E BM CẮT AC TẠI F
a)C/M : EF//AB
b) ĐƯỜNG THẲNG EF CẮT AD VÀ BC TẠI H VÀ K . C/M : HE=EF=FK
c) BIẾT AB =7,5 CM , CD=12 CM . TÍNH HK
Cho góc nhọn xAy. Trên Ax lấy AB < AC, từ B và C vẽ 2 đường thẳng song song cắt Ay ở D và E, từ E vẽ đường thẳng song song với CD cắt Ax ở F. Chứng minh AC2 = AB. AF
1, Cho hình thang ANCD (AB // CD), M là trung điểm của CD. Gọi I là giao điểm của AM và BD, K là giao điểm của BM và AC.
a, Chứng minh IK // AB.
b, Đường thẳng IK cắt AD, BC lần lượt ở E và F. CHứng minh EI = IK = KF.
2, Cho hình thang ABCD có đáy nhỏ CD. Từ D, vẽ đường thẳng song song với cạnh BC, cắt AC tại M và AB tại K. Từ C, vẽ đường thẳng song song với cạnh bên AD, cắt cạnh đáy AB tại F. Qua F, vẽ đường thẳng song song với đường chéo AC, cắt cạnh bên BC tại P. Chứng minh rằng:
a, MP song song với AB.
b, Ba đường thẳng MP, CF, DB đồng qui.
VẼ HÌNH LUÔN Ạ
Câu 6. Cho tam giác ABC vuông tại A (AB < AC), đường cao AH. Gọi M là trung điểm của AC. Đường thẳng HM cắt đường thẳng AB tại điểm E. Lấy điểm F sao cho M là trung điểm của EF. 1 Chứng minh AECF là hình bình hành. 2 Qua F kẻ đường thẳng song song với AH cắt AC kéo dài tại K. Chứng minh AH FK = AC EF . 3 Qua H kẻ đường thẳng song song với AB cắt AF tại Q. Gọi P là giao điểm của HC và FK. Chứng minh P Q ∥ AC. 4 Gọi N là trung điểm của AF và D là giao điểm của P Q với F C. Chứng minh ba điểm K, D, N thẳng hàng . giups voi a
1. Cho tứ giác ABCD. E ∈ AB. Kẻ qua E đường thẳng song song AC cắt BC ở F. Qua F vẽ đường thẳng song song BD cắt CD ở G. Qua G vẽ đường thẳng song song vs AC cắt AD ở H. CM: EFGH là hình bình hành.
2. Cho ΔABC có AB=4cm, BC=8cm, AC=6cm. Các p/g trong và ngoài tại A cắt BC ở D, E. Tính BD, DC, BE.
3. Cho hthang ABCD( AB//CD). AB=10cm, CD=30cm, E ∈ AD sao cho AE=3ED. Qua E kẻ đường thẳng song song với CD cắt BC ở F. Tính EF.