WS

Cho hình thang vuông ABCD (∠A = ∠C = 90o) có AC cắt BD tại O.

a) Chứng minh: △OAB ∼ △OCD.

b) Chứng minh: AC2 - BD2 = DC2 - AB2.

c) Qua O kẻ đường thẳng song song với 2 đáy cắt BC tại I, cắt AD tại J. Chứng minh: \(\dfrac{1}{OI}=\dfrac{1}{AB}+\dfrac{1}{CD}\).

TH
11 tháng 4 2022 lúc 15:47

-Sửa đề: \(\widehat{A}=\widehat{D}=90^0\)

a) -△OAB và △OCD có: \(\widehat{OAB}=\widehat{OCD};\widehat{AOB}=\widehat{COD}\)

\(\Rightarrow\)△OAB∼△OCD (g-g).

b) \(AC^2-BD^2=DC^2-AB^2\)

\(\Leftrightarrow AC^2-DC^2=BD^2-AB^2\)

\(\Leftrightarrow AD^2=AD^2\) (luôn đúng).

c) -△BCD có: OI//DC \(\Rightarrow\dfrac{DC}{OI}=\dfrac{BD}{BO}\Rightarrow\dfrac{DC}{OI}-1=\dfrac{OD}{BO}\)

-△AOB có: AB//DC \(\Rightarrow\dfrac{OD}{BO}=\dfrac{DC}{AB}=\dfrac{DC}{OI}-1\)

\(\Rightarrow\dfrac{DC}{AB}+1=\dfrac{DC}{OI}\Rightarrow\dfrac{DC+AB}{AB}=\dfrac{DC}{OI}\Rightarrow\dfrac{1}{OI}=\dfrac{DC+AB}{DC.AB}=\dfrac{1}{AB}+\dfrac{1}{DC}\)

 

Bình luận (0)

Các câu hỏi tương tự
TL
Xem chi tiết
TN
Xem chi tiết
ND
Xem chi tiết
LT
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
KK
Xem chi tiết
DP
Xem chi tiết
DV
Xem chi tiết