TN

cho Hình thang ABCD có AB // CD O là giao điểm của AC và BD a, chứng mình OA/AC = OB/BD. b, Kẻ đường thẳng đi qua O  song song với AD cắt CD tại E. Đường thẳng đi qua O song song với BC cắt CD tại F. Chứng minh DE = CF. c, Gọi I là giao điểm của AD và FO, J là giao điểm của BC và EO. Chứng mình IJ // AB. d, Gọi H là giao điểm của AD và BC K là trung điểm của EF. chứng mminhf O,H,K thẳng hàng

NT
3 tháng 12 2023 lúc 14:23

a: Xét ΔOAB và ΔOCD có

\(\widehat{OAB}=\widehat{OCD}\)(hai góc so le trong, AB//CD)

\(\widehat{AOB}=\widehat{COD}\)(hai góc đối đỉnh)

Do đó: ΔOAB\(\sim\)ΔOCD

=>\(\dfrac{OA}{OC}=\dfrac{OB}{OD}\)

=>\(\dfrac{OC}{OA}=\dfrac{OD}{OB}\)

=>\(\dfrac{OC}{OA}+1=\dfrac{OD}{OB}+1\)

=>\(\dfrac{OC+OA}{OA}=\dfrac{OD+OB}{OB}\)

=>\(\dfrac{AC}{OA}=\dfrac{BD}{OB}\)

=>\(\dfrac{OA}{AC}=\dfrac{OB}{BD}\)(2)

b: Xét ΔCAD có OE//AD

nên \(\dfrac{DE}{DC}=\dfrac{AO}{AC}\)(1)

Xét ΔBDC có OF//BC

nên \(\dfrac{CF}{CD}=\dfrac{BO}{BD}\left(3\right)\)

Từ (1),(2),(3) suy ra \(\dfrac{DE}{DC}=\dfrac{CF}{CD}\)

=>DE=CF

 

Bình luận (0)

Các câu hỏi tương tự
MT
Xem chi tiết
HN
Xem chi tiết
H24
Xem chi tiết
MN
Xem chi tiết
DL
Xem chi tiết
DL
Xem chi tiết
PH
Xem chi tiết
PB
Xem chi tiết
HA
Xem chi tiết