Xét hình thang MNQT có
E,F lần lượt là trung điểm của MT,NQ
=>EF là đường trung bình
=>EF//MN//TQ
Xét ΔTMN có EI//MN
nên EI/MN=TE/TM=1/2
=>EI=1/2MN
Xét ΔQMN có NF//MN
nên NF/MN=QF/QN=1/2
=>NF=1/2MN=EI
Xét hình thang MNQT có
E,F lần lượt là trung điểm của MT,NQ
=>EF là đường trung bình
=>EF//MN//TQ
Xét ΔTMN có EI//MN
nên EI/MN=TE/TM=1/2
=>EI=1/2MN
Xét ΔQMN có NF//MN
nên NF/MN=QF/QN=1/2
=>NF=1/2MN=EI
Bài 8: Cho hình thang ABCD (AB // CD). Gọi E, F, K lần lượt là trung điểm của AD, BC, BD
a) Chứng minh EK // AB // KF và E, F, K thẳng hàng
b) Gọi I là giao điểm của EF và AC. Chứng minh rằng IA = IC
Bài 9: Cho hình thang ABCD (AB // CD). Gọi E và F lần lượt là trung điểm của AD và BC. Đường thắng EF cắt BD tại I, cắt AC tại K.
a) Chứng minh: AK = KC, BI = ID
b) Cho AB = 6, CD = 10. Tính EI, KF, IK.
Cho hình thang ABCD ( AB//Cd, AB<CD). Gọi M,N là trung điểm của AD,CB. Gọi E,F là giao điểm của MN vói BD và AC . Cm EF=1/2 (CD-AB)
Cho hình thang ABCD (AB // CD). Gọi E, F lần lượt là trung điểm của AD, BC. Đường thăng EF cắt BC, AC lần lượt tại I, K.
a) Chứng minh AK = KC, BI = ID.
b) Chứng minh EI =KF.
c) Cho AB = 6cm, CD = 10cm. Tính các độ dài EI, KF, IK.
d) Chứng minh K, E, F thẳng hàng.❤❤><
Bài 1: Cho tứ giác ABCD. Gọi E, F, I là trung điểm của AD, BC, AC. Chứng minh rằng:
a) EI // CD; IF // AB.
b) EF ≤ (AB+CD)/2
Bài 2: Cho tam giác ABC có đường truyến BD và CE cắt nhau tại G. Gọi I, K là trung điểm GB, GC. Chứng minh DE// IK và DE = IK.
Bài 3: Cho tam giác ABC có đường trung tuyến BD và CE. Gọi M, N là trung điểm BE, CD. Gọi MN cắt BD tại I và MN cắt CE tại I. Chứng minh MI = IK = KN.
Bài 1: Cho tứ giác ABCD. Gọi E, F, I là trung điểm của AD, BC, AC. Chứng minh rằng:
a) EI // CD; IF // AB.
b) EF ≤ (AB+CD)/2
Bài 4: Cho tam giác ABC có đường truyến BD và CE cắt nhau tại G. Gọi I, K là trung điểm GB, GC. Chứng minh DE// IK và DE = IK.
Bài 5: Cho tam giác ABC có đường trung tuyến BD và CE. Gọi M, N là trung điểm BE, CD. Gọi MN cắt BD tại I và MN cắt CE tại I. Chứng minh MI = IK = KN
Cho hình thang MNPQ (MN//PQ). Gọi A là trung điểm MQ, B là trung điểm NP. Đường AB cắt MP tại F, cắt NQ tại E
a) CM FM=FB; EN=EQ
b) Cho MN=4cm; QP=8cm. Tính AE; FB; EF
Bài 1: Cho hình thang ABCD ( có AB// CD). Gọi E là trung điểm của AD. Kẻ đường thẳng qua E song song với AB và cắt BC tại F.
a) Chứng minh F là trung điểm của BC.
b) Cho AB = 4; CD =12. Tính EF.
Bài 2: Cho hình thang ABCD (có AB // CD; AB < CD). Gọi E, F, G lần lượt là trung điểm của AD, AC, BD.
a) Chứng minh E, F, G thẳng hàng.
b) Chứng minh EF = (CD-AB)/2.
Bài 1: Cho hình thang ABCD ( có AB// CD). Gọi E là trung điểm của AD. Kẻ đường thẳng qua E song song với AB và cắt BC tại F.
a) Chứng minh F là trung điểm của BC.
b) Cho AB = 4; CD =12. Tính EF.
Bài 2: Cho hình thang ABCD (có AB // CD; AB < CD). Gọi E, F, G lần lượt là trung điểm của AD, AC, BD.
a) Chứng minh E, F, G thẳng hàng.
b) Chứng minh EF = (CD-AB)/2.
giúp với ạ
Cho hình thang ABCD(AB//CD), EF là đường trung bình của hình thang. Đường thẳng EF cắt BC tại I. Chứng minh:
a,I là trung điểm của BD
b, Tính độ dài EI biết AB=6cm
cảm ơn ạ