a: Xét ΔABD và ΔBDC có
AB/BD=BD/DC
\(\widehat{ABD}=\widehat{BDC}\)
Do đo: ΔABD\(\sim\)ΔBDC
b: Sửa đề: AD cắt BC tại M
Xét ΔMDC có AB//DC
nên AB/DC=MB/MC
=>MB/MC=4/16=1/4
\(\Leftrightarrow MC=4MB\)
\(\Leftrightarrow4MB=MB+6\)
=>MB=2
=>MC=6+2=8cm
a: Xét ΔABD và ΔBDC có
AB/BD=BD/DC
\(\widehat{ABD}=\widehat{BDC}\)
Do đo: ΔABD\(\sim\)ΔBDC
b: Sửa đề: AD cắt BC tại M
Xét ΔMDC có AB//DC
nên AB/DC=MB/MC
=>MB/MC=4/16=1/4
\(\Leftrightarrow MC=4MB\)
\(\Leftrightarrow4MB=MB+6\)
=>MB=2
=>MC=6+2=8cm
Cho tam giác ABC vuông tại A, có AB= 8cm, đường cao AH. Tia phân giác của góc C cắt AB tại D.
a) Chứng minh tam giác HBA đồng dạng với tam giác ABC
b) Tính BC, BD, AD
c) Từ B vẽ BK vuông góc với CD tại K, BK cắt AH kéo dài tại E, trên CD lấy điểm S sao cho BA=BS. Chứng minh BF vuông góc với EF
Cho hình bình hành ABCD có góc B là góc tù. Kẻ AH vuông góc với BD tại I, HK vuông góc với CD tại K. Gọi M là trung điểm của DK và N là trung điểm của BH. (cho biết S là diện tích) 1/ Chứng minh: tam giác ABN đồng dạng với tam giác HDM 2/ Kẻ NO vuông góc với AB tại O, Chứng minh: 3 điểm O, H, M thẳng hàng 3/ AN cắt BC tại E và cắt CD tại F. Trong trường hợp diện tích tam giác AHD/diện tích tam giác CEF=15/16. Tính tỷ số diện tích tam giác AHF/diện tích tam giác BNE. Giúp mình ý số 3 với ạ
Cho tam giác ABC vuông tại A, có AB=6cm;BC=10cm và đường phân giác BD ( D thuộc cạnh AC). Kẻ DH vuông góc với BC ( H thuộc cạnh BC). a,Tính tỉ số AD/CD b,Nêu 2 cặp cạnh tam giác đồng dạng trên hình? c, Chứng minh AB.DC= HB.BC?
Cho hình thang ABCD (AB//CD) có góc A = góc B = 90độ ,AB=4cm,CD=9cm,BC=13cm.Gọi M là trung điểm AD,I là giao điểm AD và BC
Kẻ MH vuông góc BC tại H .BK vuông góc CD tại K
a)ABKD là hình gì?Tính KC,BK,AD
b(Tính IA,IM
c)C/m tam giacs IMH đồng dạng tam giác BCK và tính MH
Cho tam giác ABC vuông tại A, AB = 6cm, AC = 8cm, đường cao AH, đường phân giác BD. Gọi I là giao điểm của AH và BD a, Tính độ AD, DC b, CM: AD.BI=BD.HB c, Chứng minh tam giác AID là tam giác cân ? d, CM: IH trên IA = AD trên DC
Bài 1: Cho tam giác ABC vuông tại A có đường phân giác BD, đường trung tuyến AM, đường cao AH.
a) Tính AB, BC, AH, AM. Biết AD = 3 cm; CD = 5 cm.
b) Gọi I, K lần lượt là hình chiếu của H trên AB, AC. Chứng minh rằng AM vuông góc vs IK.
Cho hình chữ nhật ABCD có AB=8cm , BC=6cm . gọi H là chân đường vuông góc kẻ từ A xuống BD , phân giác của góc BCD cắt BD ở E
a) chứng minh tam giác AHB đồng dạng với tam giác BCD
b) chứng minh AH.ED=HB.EB
c) Tính diện tích tứ giác AECH
Cho tam giác ABC vuông tại A ( AB<AC) đường cao AH
a/ Chứng minh tam giác BHA đồng dạng tam giác BAC
b/ Vẽ BD là đường phân giác của góc tam giác ABC cắt AH tại K. Chứng minh : BA.BK = BD.BH
c/ Qua C kẻ đường thẳng vuông góc với BD tại E. Chứng minh AE = EC
Cho hình thang vuông ABCD (AB // CD) có góc A =90o, cạnh BC vuông góc với đường chéo BD, đường phân giác của góc BDC cắt cạnh BC tại I. Cho biết độ dài AB= 2,5 và góc ABD = 60o.
a) C/m: ΔIDC là tam giác cân.
b) Tính BC, AD, DC và đường phân giác DI.