NT

Cho hình thang ABCD (AB//DC); AC cắt BD tại O.
a, Chứng minh ∆AOB đồng dạng với ∆COD và chứng minh OA.OD=OB.OC.Nếu cho biết AB=4cm, DC=8cm, OC=6cm, hãy tính độ dài đoạn thẳng AO
b, Gọi M là trung điểm DC; AM cắt BD tại I; BM cắt AC tại K.Chứng minh IK//AB
c, Kẻ tia phân giác của góc ACB cắt AB tại N.Trên nửa mặt phẳng không chứa điểm M bờ là đường thẳng AB vẽ tia Ax sao cho góc xAB = góc NCA,tia Ax cắt tia CN tại E.Chứng minh:(CE-NE)^2=AC.BC-AN.NB

PL
3 tháng 2 2022 lúc 19:35

a, Vì AB // CD => \(\widehat{ABD}\)= \(\widehat{ODC}\)\(\widehat{BAD}\) =\(\widehat{OCD}\)(SLT)

       Nên  ΔAOB ᔕ ΔCOD (g.g)

Vì AB // CD => \(\dfrac{OA}{OC}=\dfrac{OB}{OD}=\dfrac{AB}{CD}=\dfrac{4}{8}=\dfrac{1}{2}\) = OB/OD = AB/CD (ĐL Ta-lét)

=> OA.OD =OB.OC

Ta có: OA = \(\dfrac{DC}{2}\)\(\dfrac{6}{2}\) = 3 (cm)

b, Vì AB // DM => \(\dfrac{DM}{AB}=\dfrac{MI}{AI}\) (1)

Vì AB // MI => \(\dfrac{MC}{AB}=\dfrac{MK}{AB}\)(2)

Ta có: MD = MC (3)

(1), (2) và (3) => \(\dfrac{MI}{AI}=\dfrac{MK}{KB}\)<=> IK // AB ( Định lí Ta-lét đảo)

Bình luận (0)
NT
3 tháng 2 2022 lúc 19:29

a: Xét ΔAOB và ΔCOD có

\(\widehat{AOB}=\widehat{COD}\)

\(\widehat{OAB}=\widehat{OCD}\)

Do đó: ΔAOB\(\sim\)ΔCOD

Suy ra: \(\dfrac{OA}{OC}=\dfrac{OB}{OD}=\dfrac{AB}{CD}\)

hay \(OA\cdot OD=OB\cdot OC\)

\(\dfrac{AB}{CD}=\dfrac{OA}{OC}\)

=>\(OA=\dfrac{4}{8}\cdot6=\dfrac{1}{2}\cdot6=3\left(cm\right)\)

b: 

Bình luận (0)

Các câu hỏi tương tự
HK
Xem chi tiết
TM
Xem chi tiết
DN
Xem chi tiết
NB
Xem chi tiết
LM
Xem chi tiết
NA
Xem chi tiết
H24
Xem chi tiết
LY
Xem chi tiết
TQ
Xem chi tiết