Áp dụng hệ thức lượng trong tam giác vuông vào ΔABD vuông tại A có AH là đường cao ứng với cạnh huyền BD, ta được:
\(AH^2=HB\cdot HD\left(1\right)\)
Ta có: \(\widehat{HDN}=\widehat{HBA}\)
\(\widehat{HMB}=\widehat{HBA}\left(=90^0-\widehat{BAH}\right)\)
Do đó: \(\widehat{HDN}=\widehat{HMB}\)
Xét ΔHDN vuông tại H và ΔHMB vuông tại H có
\(\widehat{HDN}=\widehat{HMB}\)
Do đó: ΔHDN\(\sim\)ΔHMB
Suy ra: \(\dfrac{HD}{HM}=\dfrac{HN}{HB}\)
hay \(HD\cdot HB=HM\cdot HN\left(2\right)\)
Từ \(\left(1\right),\left(2\right)\) suy ra \(HA^2=HM\cdot HN\)