Bài 1: Căn bậc hai

NL

cho hình chữ nhật BCD có AB=9cm, BC=12cm. kẻ AH vuông góc với BD tại H, kẻ HI vuông góc với AB .Đường thẳng AH cắt BC tại M và cắt DC tại N. Chứng minh \(HA^2\)=HM.HN

NT
21 tháng 8 2021 lúc 21:57

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABD vuông tại A có AH là đường cao ứng với cạnh huyền BD, ta được:

\(AH^2=HB\cdot HD\left(1\right)\)

Ta có: \(\widehat{HDN}=\widehat{HBA}\)

\(\widehat{HMB}=\widehat{HBA}\left(=90^0-\widehat{BAH}\right)\)

Do đó: \(\widehat{HDN}=\widehat{HMB}\)

Xét ΔHDN vuông tại H và ΔHMB vuông tại H có

\(\widehat{HDN}=\widehat{HMB}\)

Do đó: ΔHDN\(\sim\)ΔHMB

Suy ra: \(\dfrac{HD}{HM}=\dfrac{HN}{HB}\)

hay \(HD\cdot HB=HM\cdot HN\left(2\right)\)

Từ \(\left(1\right),\left(2\right)\) suy ra \(HA^2=HM\cdot HN\)

Bình luận (0)

Các câu hỏi tương tự
PA
Xem chi tiết
H24
Xem chi tiết
VD
Xem chi tiết
XT
Xem chi tiết
LA
Xem chi tiết
TN
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
BA
Xem chi tiết