BB

Cho hình chữ nhật ABCD. Gọi H là chân đường vuông góc kẻ từ A đến BD.
Gọi M và N theo thứ tự là trung điểm của các đoạn AH và DH.
a/ Chứng minh MN// AD.
b/ Gọi I là trung điểm của cạnh BC. Chứng minh tứ giác BMNI là hình bình hành.
(Vẽ hình và giải chi tiết giúp mình nhé! Cảm ơn nhiều ạ)

KL
14 tháng 10 2023 lúc 10:18

loading... a) Do M là trung điểm AH (gt)

N là trung điểm DH (gt)

⇒ MN là đường trung bình của ∆ADH

⇒ MN // AD

b) Do MN // AD

⇒ MN // BC

⇒ MN // BI

Do MN là đường trung bình của ∆ADH (cmt)

⇒ MN = AD : 2 (1)

Ta có:

I là trung điểm BC (gt)

⇒ BI = BC : 2 (2)

Do ABCD là hình chữ nhật (gt)

⇒ AD = BC (3)

Từ (1), (2) và (3) ⇒ MN = BI

Tứ giác BMNI có:

MN // BI (cmt)

MN = BI (cmt)

⇒ BMNI là hình bình hành

Bình luận (0)
NT
14 tháng 10 2023 lúc 10:10

a: Xét ΔHAD có M,N lần lượt là trung điểm của HA, HD

=>MN là đường trung bình của ΔHAD

=>MN//AD và \(MN=\dfrac{AD}{2}\)

b; MN//AD

AD//BC

Do đó: MN//BC

\(MN=\dfrac{AD}{2}\)

\(AD=BC\)

\(BI=\dfrac{BC}{2}\)

Do đó: MN=BI

Xét tứ giác MNIB có

MN//IB

MN=IB

Do đó: MNIB là hình bình hành

Bình luận (0)

Các câu hỏi tương tự
LP
Xem chi tiết
NM
Xem chi tiết
NA
Xem chi tiết
PH
Xem chi tiết
TL
Xem chi tiết
NL
Xem chi tiết
DT
Xem chi tiết
FT
Xem chi tiết
LL
Xem chi tiết