Lời giải:
Với \(AE\parallel BC\), áp dụng định lý Ta-let ta có:
\(\frac{AM}{MC}=\frac{AE}{BC}=\frac{\frac{AD}{2}}{BC}=\frac{\frac{BC}{2}}{BC}=\frac{1}{2}\)
\(\Rightarrow \frac{AM}{AC}=\frac{AM}{AM+MC}=\frac{1}{3}\)
Ta có: \(\frac{S_{ABM}}{S_{ABC}}=\frac{AM}{AC}=\frac{1}{3}\) (chung đường cao hạ từ B)
\(\frac{S_{ABC}}{S_{ABCD}}=\frac{\frac{AB.BC}{2}}{AB.BC}=\frac{1}{2}\)
\(\Rightarrow \frac{S_{ABM}}{S_{ABCD}}=\frac{1}{3}.\frac{1}{2}=\frac{1}{6}\)