Bài 12: Hình vuông

SK

Cho hình chữ nhật ABCD có AB = 2AD. Gọi E, F theo thứ tự là trung điểm của AB, CD. Gọi M là giao điểm của AF và DE, N là giao điểm của BF và CE

a) Tứ giác ADFE là hình gì ? Vì sao ?

b) Tứ giác EMFN là hình gì ? Vì sao ?

HY
21 tháng 4 2017 lúc 17:08

a) Tứ giác ADFE có AE // DF, AE = DF nên là hình bình hành.

Hình bình hành ADFE có góc A = 900 nên là hình chữ nhật.

Hình chữ nhật ADFE có AE = AD nên là hình vuông.

b) Tứ giác DEBF có EB // DF, EB = DF nên là hình bình hành.

Do đó DE // BF

Tương tự AF // EC

Suy ra EMFN là hình bình hành.

Theo câu a, ADFE là hình vuông nên ME = MF, ME ⊥ MF.

Hình bình hành EMFN có góc M = 900 nên là hình chữ nhật, lại có ME = MF nên là hình vuông.

Bình luận (0)
NT
9 tháng 8 2017 lúc 14:33

a) Tứ giác ADFE có AE // DF, AE = DF nên là hình bình hành.

Hình bình hành ADFE có ˆAA^ = 900 nên là hình chữ nhật.

Hình chữ nhật ADFE có AE = AD nên là hình vuông.

b) Tứ giác DEBF có EB // DF, EB = DF nên là hình bình hành.

Do đó DE // BF

Tương tự AF // EC

Suy ra EMFN là hình bình hành.

Theo câu a, ADFE là hình vuông nên ME = MF, ME ⊥ MF.

Hình bình hành EMFN có ˆMM^ = 900 nên là hình chữ nhật, lại có ME = MF nên là hình vuông

Bình luận (0)