Bài 1. PHƯƠNG TRÌNH ĐƯỜNG THẲNG

TM

Cho hình chữ nhật ABCD có 2 điểm E,F lần lượt nằm trên các cạnh AB, AD sao cho EB=2EA, FA=3FD. Biết F(2;1), ptđt CE: x-3y-9=0, tam giác CEF vuông tại F. Tìm tọa độ điểm C biết C có hoành độ dương.

NL
3 tháng 4 2021 lúc 10:38

\(EF^2=AF^2+AE^2=\dfrac{9}{16}AD^2+\dfrac{1}{9}AB^2\)

\(CF^2=DF^2+CD^2=\dfrac{1}{16}AD^2+AB^2\)

\(CE^2=BC^2+EB^2=AD^2+\dfrac{4}{9}AB^2\)

Theo Pitago: \(EF^2+CF^2=CE^2\Rightarrow16AB^2=9AD^2\Rightarrow AD=\dfrac{4}{3}AB\)

\(\Rightarrow\left\{{}\begin{matrix}EF^2=\dfrac{10}{9}AB^2\\CF^2=\dfrac{10}{9}AB^2\end{matrix}\right.\) \(\Rightarrow EF=CF\)

Gọi H là hình chiếu vuông góc của F lên CE \(\Rightarrow H\) là trung điểm CE

Phương trình HF: \(3\left(x-2\right)+1\left(y-1\right)=0\Leftrightarrow3x+y-7=0\)

 Tọa độ H là nghiệm: \(\left\{{}\begin{matrix}x-3y-9=0\\3x+y-7=0\end{matrix}\right.\) \(\Rightarrow H\left(3;-2\right)\)

Gọi \(C\left(3c+9;c\right)\Rightarrow E\left(-3c-3;-c-4\right)\) \(\Rightarrow\left\{{}\begin{matrix}\overrightarrow{EF}=\left(3c+5;c+5\right)\\\overrightarrow{FC}=\left(3c+7;c-1\right)\end{matrix}\right.\)

\(EF\perp CF\Rightarrow\left(3c+5\right)\left(3c+7\right)+\left(c+5\right)\left(c-1\right)=0\)

\(\Leftrightarrow c^2+4c+3=0\Rightarrow\left[{}\begin{matrix}c=-1\Rightarrow C\left(6;-1\right)\\c=-3\Rightarrow C\left(0;-3\right)\left(loại\right)\end{matrix}\right.\)

Bình luận (0)

Các câu hỏi tương tự
GG
Xem chi tiết
TL
Xem chi tiết
HP
Xem chi tiết
HP
Xem chi tiết
LN
Xem chi tiết
PD
Xem chi tiết
PT
Xem chi tiết
CA
Xem chi tiết
H24
Xem chi tiết