PB

Cho hình chữ nhật ABCD, AC và BD cắt nhau tại I. Gọi H, K, L, J lần lượt là trung điểm của AD, BC, KC và IC. Chứng minh rằng hai hình thang JLKI và IHDC đồng dạng với nhau.

CT
18 tháng 1 2017 lúc 10:30

Giải bài 2 trang 33 sgk Hình học 11 | Để học tốt Toán 11

+ I là trung điểm AC; BD; HK

⇒ ĐI(H) = K ; ĐI(D) = B ; ĐI (C) = A.

⇒ Hình thang IKBA đối xứng với hình thang IHDC qua I (1)

+ J; L; K; I lần lượt là trung điểm của CI; CK; CB; CA

Giải bài 2 trang 33 sgk Hình học 11 | Để học tốt Toán 11

⇒ Hình thang JLKI là ảnh của hình thang IKBA qua phép vị tự tâm C tỉ số 1/2.

⇒ Hình thang JLKI là ảnh của hình thang IHDC qua phép đồng dạng có được bằng cách thực hiện liên tiếp phép đối xứng tâm I và phép vị tự tâm C tỉ số 1/2.

⇒ IJKI và IHDC đồng dạng.

Bình luận (0)

Các câu hỏi tương tự
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
YN
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
MN
Xem chi tiết
NN
Xem chi tiết
NL
Xem chi tiết