NN

Cho hình chóp S ABCD . có đáy ABCD là hình bình hành tâm O. Gọi M.N.P lần lượt là trung điểm AD,BC và SB a, tìm giao điểm Q của SA và (MNP) b, chứng minh SD//(MNP) và (SMC)//(ANP) c, gọi H=BD ∩ AN, K=BD ∩ MC, i= PK ∩ SH. tính tỉ số SΔSLK/SΔSLP

NL
7 tháng 1 2022 lúc 16:52

a. Do M, N là trung điểm AD, BC \(\Rightarrow MN||AB||CD\)

Gọi Q là trung điểm SA

\(\Rightarrow PQ\) là đường trung bình tam giác SAB

\(\Rightarrow PQ||AB\Rightarrow PQ||MN\Rightarrow Q\in\left(MNP\right)\)

\(\Rightarrow Q=SA\cap\left(MNP\right)\)

b. Do Q là trung điểm SA, M là trung điểm AD

\(\Rightarrow MQ\) là đường trung bình tam giác SAD \(\Rightarrow MQ||SD\)

Mà \(MQ\in\left(MNP\right)\Rightarrow SD||\left(MNP\right)\)

Tương tự ta có \(NP||SC\) (đường trung bình) (1)

\(\left\{{}\begin{matrix}AM=NC=\dfrac{1}{2}AD\\AM||NC\end{matrix}\right.\) \(\Rightarrow AN||CM\) (2)

(1);(2) \(\Rightarrow\left(SMC\right)||\left(ANP\right)\)

c. Đề bài không tồn tại điểm L

Bình luận (0)
NL
7 tháng 1 2022 lúc 16:53

undefined

Bình luận (0)

Các câu hỏi tương tự
PC
Xem chi tiết
PC
Xem chi tiết
TL
Xem chi tiết
MN
Xem chi tiết
PB
Xem chi tiết
HA
Xem chi tiết
V2
Xem chi tiết
TK
Xem chi tiết
H24
Xem chi tiết