LV

cho hình chóp SABCD đáy là hình vuông cạnh a, SA vuông góc với đáy, SB tạo với đáy 1 góc 45°. H,K lần lượt là hình chiếu của A lên SB,SD. Mặt phẳng (AHK) cắt SC tại I. Tính VSAHIK

NL
30 tháng 6 2021 lúc 17:27

\(SA\perp\left(ABCD\right)\Rightarrow\widehat{SBA}\) là góc giữa SB và (ABCD)

\(\Rightarrow\widehat{SBA}=45^0\Rightarrow\Delta SAB\) vuông cân \(\Rightarrow\left\{{}\begin{matrix}SA=AB=a\\SB=a\sqrt{2}\end{matrix}\right.\) 

\(SC=\sqrt{SA^2+AC^2}=\sqrt{a^2+2a^2}=a\sqrt{3}\)

\(\dfrac{V_{SAHIK}}{V_{SABCD}}=\dfrac{2V_{SAHI}}{2V_{SABC}}=\dfrac{V_{SAHI}}{V_{SABC}}=\dfrac{SH}{SB}.\dfrac{SI}{SC}=\left(\dfrac{SA}{SB}\right)^2\left(\dfrac{SA}{SC}\right)^2=\left(\dfrac{a}{a\sqrt{2}}\right)^2\left(\dfrac{a}{a\sqrt{3}}\right)^2=\dfrac{1}{6}\)

\(\Rightarrow V_{SAIHK}=\dfrac{1}{6}V_{SABCD}=\dfrac{1}{6}.\dfrac{1}{3}.SA.AB^2=\dfrac{a^3}{18}\)

Bình luận (0)
NL
30 tháng 6 2021 lúc 17:18

Bạn coi lại đề, AHIK là 1 tứ giác nên ko thể có thể tích

Bình luận (1)

Các câu hỏi tương tự
LV
Xem chi tiết
PB
Xem chi tiết
LV
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết