a/ Do \(\left\{{}\begin{matrix}BO\perp AC\\BO\perp SA\end{matrix}\right.\) \(\Rightarrow BO\perp\left(SAC\right)\)
\(\Rightarrow BO=d\left(B;\left(SAC\right)\right)=\frac{1}{2}BD=\frac{a\sqrt{2}}{2}\)
b/ \(OC=\frac{1}{2}AC\Rightarrow d\left(O;\left(SCD\right)\right)=\frac{1}{2}d\left(A;\left(SCD\right)\right)\)
Từ A kẻ \(AH\perp SD\Rightarrow AH\perp\left(SCD\right)\)
\(\Rightarrow AH=d\left(A;\left(SCD\right)\right)\)
Áp dụng hệ thức lượng: \(\frac{1}{AH^2}=\frac{1}{SA^2}+\frac{1}{AD^2}\Rightarrow AH=...\Rightarrow d\left(O;\left(SCD\right)\right)=\frac{1}{2}AH=...\)
c/ Từ A kẻ \(AK\perp SO\Rightarrow AK\perp\left(SBD\right)\)
\(\Rightarrow AK=d\left(A;\left(SBD\right)\right)\)
\(\frac{1}{AK^2}=\frac{1}{SA^2}+\frac{1}{OA^2}=\frac{1}{SA^2}+\frac{4}{AC^2}\Rightarrow AK=...\)
d/ \(d\left(BC;\left(SAD\right)\right)=d\left(B;\left(SAD\right)\right)=AB=...\)
e/ \(d\left(AB;\left(SCD\right)\right)=d\left(A;\left(SCD\right)\right)=AH=...\)