H24

cho hình chóp S.ABCD, đáy ABCD là hình thang, có đáy lớn AB. Gọi M,N lần lượt là trung điểm SA,SC; E = AC giao BD. Xác định vị trí tương đối của các cặp đường thẳng và mặt phẳng sau

a) MN và (ABCD)

b) AN và (ABD) 

c) SE và (SAC)

NT
20 tháng 10 2023 lúc 23:20

a: Xét ΔSAC có M,N lần lượt là trung điểm của SA,SC

=>MN là đường trung bình của ΔSAC

=>MN//AC

mà MN không thuộc mp(ABCD) và \(AC\subset\left(ABCD\right)\)

nên MN//(ABCD)

b: \(A\in AN;A\in\left(ABD\right)\)

=>\(A\in AN\cap\left(ABD\right)\)

mà \(N\in SC\) không thuộc mp(ABD)

nên \(A=AN\cap\left(ABD\right)\)

c: \(S\in\left(SAC\right);E\in AC\subset\left(SAC\right)\)

Do đó: \(SE\subset\left(SAC\right)\)

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
NN
Xem chi tiết
PB
Xem chi tiết
H24
Xem chi tiết
PB
Xem chi tiết
NN
Xem chi tiết