NT

Cho hình chóp S.ABCD có SA vuông góc (ABCD), ABCD là hình chữ nhật. AB=a, \(AD=a\sqrt{3}\). Biết rằng mp(SDC) tạo với đáy một góc bằng 60 độ.

a. Tính \(cos\left(\widehat{\left(SBC\right);\left(ABCD\right)}\right)\)

b: Tính \(tan\left(\widehat{\left(SBD\right);\left(ABCD\right)}\right)\)

 

NL
20 tháng 4 2023 lúc 9:08

\(\left\{{}\begin{matrix}SA\perp\left(ABCD\right)\Rightarrow SA\perp CD\\AD\perp CD\end{matrix}\right.\) \(\Rightarrow CD\perp\left(SAD\right)\)

Mà CD là giao tuyến (SCD) và (ABCD)

\(\Rightarrow\widehat{SDA}\) là góc giữa (SCD) và (ABCD)

\(\Rightarrow\widehat{SDA}=60^0\Rightarrow SA=AD.tan60^0=3a\)

a.

\(\left\{{}\begin{matrix}SA\perp\left(ABCD\right)\Rightarrow SA\perp BC\\AB\perp BC\end{matrix}\right.\) \(\Rightarrow BC\perp\left(SAB\right)\)

Mà \(BC=\left(SBC\right)\cap\left(ABCD\right)\Rightarrow\widehat{SBA}\) là góc giữa (SBC) và (ABCD)

\(tan\widehat{SBA}=\dfrac{SA}{AB}=3\Rightarrow\widehat{SBA}=...\)

b.

Từ A kẻ \(AE\perp BD\)

\(SA\perp\left(ABCD\right)\Rightarrow SA\perp BD\)

\(\Rightarrow BD\perp\left(SAE\right)\Rightarrow\widehat{SEA}\) là góc giữa (SBD) và (ABCD)

Hệ thức lượng: \(\dfrac{1}{AE^2}=\dfrac{1}{AB^2}+\dfrac{1}{AD^2}\Rightarrow AE=\dfrac{a\sqrt{3}}{2}\)

\(tan\widehat{SEA}=\dfrac{SA}{AE}=2\sqrt{3}\Rightarrow\widehat{SEA}=...\)

Bình luận (0)
NL
20 tháng 4 2023 lúc 9:10

loading...

Bình luận (0)

Các câu hỏi tương tự
NT
Xem chi tiết
NT
Xem chi tiết
NT
Xem chi tiết
NT
Xem chi tiết
PG
Xem chi tiết
TD
Xem chi tiết
TD
Xem chi tiết
TT
Xem chi tiết
PB
Xem chi tiết