PB

Cho hình chóp S.ABCD có đáy ABCD là một hình bình hành. Gọi M, N, P theo thứ tự là trung điểm của đoạn thẳng SA, BC, CD. Tìm thiết diện của hình chóp khi cắt bởi mặt phẳng (MNP). Gọi O là giao điểm hai đường chéo của hình bình hành ABCD, hãy tìm giao điểm của đường thẳng SO với mặt phẳng (MNP).

CT
9 tháng 6 2018 lúc 3:37

Giải bài 2 trang 77 sgk Hình học 11 | Để học tốt Toán 11

a) Tìm thiết diện :

Trong mp(ABCD), gọi F = AD ∩ PN và E = AB ∩ PN

Trong mp(SAD), gọi Q = MF ∩ SD

Trong mp(SAB), gọi R = ME ∩ SB

Nối PQ, NR ta được các đoạn giao tuyến của mp(MNP) với các mặt bên và mặt đáy của hình chóp là MQ, QP, PN, NR, RM

Vậy thiết diện cắt bởi mặt phẳng (MNP) là ngũ giác MQPNR.

b) Tìm SO ∩ (MNP). Gọi H là giao điểm của AC và PN .

Trong (SAC), SO ∩ MH = I

Giải bài 2 trang 77 sgk Hình học 11 | Để học tốt Toán 11

Vậy I = SO ∩ (MNP).

Bình luận (0)
LT
20 tháng 12 2021 lúc 19:14
a. M là điểm chung thứ nhất của (MCB) và (SAD). Ta có: CB // AD. Vậy giao tuyến của (MCB) và (SAD) là đường thẳng d kẻ từ M và song song với AD b. Trong (SAD): d \cap∩ SD = F. Vậy thiết diện cần tìm là hình thang MFCB.
Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
PB
Xem chi tiết
PB
Xem chi tiết
XC
Xem chi tiết
PB
Xem chi tiết
NN
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
IM
Xem chi tiết
PB
Xem chi tiết