PB

Cho hình chóp S.ABCD có đáy là hình bình hành ABCD, O là giao điểm hai đường chéo, AC = a, BD = b, tam giác SBD đều. Gọi I là điểm di động trên đoạn AC với AI = x (0 < 0 < a). Lấy là mặt phẳng đi qua I và song song với mặt phẳng (SBD).

a) Xác định thiết diện của mặt phẳng với hình chóp S.ABCD.

b) Tìm diện tích S của thiết diện ở câu a) theo a, b, x. Tìm x để S lớn nhất.

CT
23 tháng 12 2018 lúc 5:41

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Giải sách bài tập Toán 11 | Giải sbt Toán 11

a) Trường hợp 1 .

I thuộc đoạn AO (0 < x < a/2)

Khi đó I ở vị trí I1

Ta có: (α) // (SBD)

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Vì (α) // BD nên (α) cắt (ABD) theo giao tuyến M1N1 ( qua I1) song song với BD

Tương tự (α) // SO nên (α) cắt (SOA) theo giao tuyến

S1T1 song song với SO.

Ta có thiết diện trong trường hợp này là tam giác S1M1N1.

Nhận xét. Dễ thấy rằng S 1 M 1   / /   S B   v à   S 1 N 1   / /   S D . Lúc đó tam giác S1M1N1 đều.

Trường hợp 2. I thuộc đoạn OC (a/2 < x < a)

Khi đó I ở vị trí I2. Tương tự như trường hợp 1 ta có thiết diện là tam giác đều

S 2 M 2 N 2   c ó   M 2 N 2   / /   B D , S 2 M 2   / /   S B ,   S 2 N 2   / /   S D .

Trường hợp 3. I ≡ O. Thiết diện chính là tam giác đều SBD.

b) Ta lần lượt tìm diện tích thiết diện trong các trường hợp 1,2,3.

Trường hợp 1. I thuộc đoạn AO (0 < x < a/2)

Giải sách bài tập Toán 11 | Giải sbt Toán 11 

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Trường hợp 2. I thuộc đoạn OC (a/2 < x < a)

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Trường hợp 3. I ≡ O.

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Tóm lại

Giải sách bài tập Toán 11 | Giải sbt Toán 11

∗ Đồ thị của hàm số S theo biến x như sau:

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Vậy Sthiết diện lớn nhất khi và chỉ khi x = a/2.

Bình luận (0)

Các câu hỏi tương tự
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
H24
Xem chi tiết
CH
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
HL
Xem chi tiết