NT

Cho hình chóp S.ABCD có đáy ABCD là hình thang(hai cạnh đáy là AB,CD). Gọi I,J lần lượt là trung điểm của các cạnh AD,BC và G là trọng tâm của ΔSAB. Tìm k để AB=k*CD để thiết diện của mặt phẳng (GIJ) với hình chóp S.ABCD là hình bình hành

NL
27 tháng 12 2022 lúc 19:12

IJ là đường trung bình của hình thang \(\Rightarrow\left\{{}\begin{matrix}IJ||AB\\IJ=\dfrac{AB+CD}{2}\end{matrix}\right.\)

Qua G kẻ đường thẳng song song AB lần lượt cắt SB, SA tại E và F

\(\Rightarrow\) Tứ giác IJEF là thiết diện của (GIJ) và chóp

\(EF||AB||IJ\Rightarrow IJEF\) là hình thang

Gọi M là trung điểm AB

Theo tính chất trọng tâm và định lý Talet:

\(\dfrac{EF}{AB}=\dfrac{SG}{SM}=\dfrac{2}{3}\)

Để IJEF là hình bình hành \(\Leftrightarrow IJ=EF\)

\(\Leftrightarrow\dfrac{2}{3}AB=\dfrac{AB+CD}{2}\Leftrightarrow\dfrac{1}{3}AB=CD\)

\(\Rightarrow AB=3CD\)

Bình luận (0)

Các câu hỏi tương tự
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
TD
Xem chi tiết
HH
Xem chi tiết
PB
Xem chi tiết
HM
Xem chi tiết