NL

Cho hình chóp đều tứ giác đều S ABCD . có tất cả các cạnh bằng a . Gọi O là giao điểm AC và BD
a) Chứng minh SA vuông góc với SC.

b) Tính góc giữa mặt bên và mặt đáy.

c) Tính khoảng cách từ A đến mặt phẳng (SCD)

NL
7 tháng 5 2023 lúc 22:07

a.

\(AC=\sqrt{AB^2+BC^2}=a\sqrt{2}\)

\(SA=SC=a\Rightarrow SA^2+SC^2=AC^2\)

\(\Rightarrow\Delta SAC\) vuông tại S (Pitago đảo) 

\(\Rightarrow SA\perp SC\)

b.

Gọi E là trung điểm CD \(\Rightarrow OE\perp CD\)

Chóp tứ giác đều \(\Rightarrow SO\perp\left(ABCD\right)\Rightarrow SO\perp CD\)

\(\Rightarrow CD\perp\left(SOE\right)\)

Mà \(CD=\left(SCD\right)\cap\left(ABCD\right)\Rightarrow\widehat{SEO}\) là góc giữa mặt bên và đáy

\(OE=\dfrac{1}{2}BC=\dfrac{a}{2}\) (đường trung bình) ; \(SO=\dfrac{1}{2}AC=\dfrac{a\sqrt{2}}{2}\) (trung tuyến ứng với cạnh huyền)

\(\Rightarrow tan\widehat{SEO}=\dfrac{SO}{OE}=\sqrt{2}\Rightarrow\widehat{SEO}=...\)

c.

Từ O kẻ \(OF\perp SE\Rightarrow OF\perp\left(SCD\right)\)

\(\Rightarrow OF=d\left(O;\left(SCD\right)\right)\)

Hệ thức lượng trong tam giác vuông SOE:

\(\dfrac{1}{OF^2}=\dfrac{1}{SO^2}+\dfrac{1}{OE^2}\Rightarrow OF=\dfrac{SO.OE}{\sqrt{SO^2+OE^2}}=\dfrac{a\sqrt{6}}{6}\)

\(\left\{{}\begin{matrix}AO\cap\left(SCD\right)=C\\AC=2OC\end{matrix}\right.\) \(\Rightarrow d\left(A;\left(SCD\right)\right)=2d\left(O;\left(SCD\right)\right)=2OF=\dfrac{a\sqrt{6}}{3}\)

Bình luận (0)
NL
7 tháng 5 2023 lúc 22:07

loading...

Bình luận (0)

Các câu hỏi tương tự
PB
Xem chi tiết
HA
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
DL
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết