Ôn tập chương I : Tứ giác

H24

cho hình bình hành ABCD. vẽ phía ngoài hình bình hành hai hình vuông ABEF và ADGH. Chứng minh:

 AC = FH, AC ⊥ FH

NT
26 tháng 11 2023 lúc 9:56

Ta có: \(\widehat{FAH}+\widehat{BAD}+\widehat{BAF}+\widehat{HAD}=360^0\)

=>\(\widehat{FAH}+\widehat{BAD}+90^0+90^0=360^0\)

=>\(\widehat{FAH}+\widehat{BAD}=180^0\)

mà \(\widehat{BAD}+\widehat{ABC}=180^0\)(ABCD là hình bình hành)

nên \(\widehat{FAH}=\widehat{ABC}\)

ABEF là hình vuông

=>AB=AF

AHGD là hình vuông

=>AH=AD

mà AD=BC

nên AH=BC

Xét ΔFAH và ΔABC có

FA=AB

\(\widehat{FAH}=\widehat{ABC}\)

AH=BC

Do đó:ΔFAH=ΔABC

=>AC=FH và \(\widehat{AFH}=\widehat{BAC}\)\(\widehat{ACB}=\widehat{AHF}\)

Gọi K là giao điểm của HF với AC

Ta có: \(\widehat{KAH}+\widehat{HAD}+\widehat{DAC}=180^0\)

=>\(\widehat{KAH}+\widehat{DAC}+90^0=180^0\)

=>\(\widehat{KAH}+\widehat{DAC}=90^0\)

mà \(\widehat{DAC}=\widehat{ACB}\) và \(\widehat{ACB}=\widehat{AHF}\)

nên \(\widehat{KAH}+\widehat{AHF}=90^0\)

=>ΔKAH vuông tại K

=>AK\(\perp\)HF tại K

=>AC\(\perp\)FH tại K

Bình luận (0)

Các câu hỏi tương tự
LL
Xem chi tiết
PT
Xem chi tiết
TN
Xem chi tiết
PN
Xem chi tiết
ME
Xem chi tiết
TN
Xem chi tiết
TT
Xem chi tiết
DH
Xem chi tiết
NT
Xem chi tiết