MA

Cho hình bình hành ABCD , trên cnh AB ly đim M , trên cnh BC ly đim N sao cho AN = CM. Gi giao đim ca AN CM K . Chng minh KD là tia phân giác ca góc AKC.

NL
20 tháng 4 2023 lúc 8:50

Trước hết ta chứng minh bổ đề sau (nếu em chưa học)

Cho 4 điểm A; B; C; D phân biệt sao cho \(AB||CD\), khi đó ta luôn có: \(S_{\Delta ACD}=S_{\Delta BCD}\)

C/m: từ A và B lần lượt kẻ \(AH\) và \(BK\) vuông góc CD \(\Rightarrow AH||BK\Rightarrow\) tứ giác AHKB là hình chữ nhật

\(\Rightarrow AH=BK\)

Do \(\left\{{}\begin{matrix}S_{\Delta ACD}=\dfrac{1}{2}AH.CD\\S_{\Delta BCD}=\dfrac{1}{2}BK.CD\end{matrix}\right.\) mà \(AH=BK\Rightarrow S_{\Delta ACD}=S_{\Delta BCD}\) (đpcm)

Quay lại bài toán, áp dụng bổ đề trên ta có: do N thuộc BC nên \(NC||AD\Rightarrow S_{\Delta NAD}=S_{\Delta CAD}\)  (1)

Tương tự, \(AM||CD\Rightarrow S_{\Delta ACD}=S_{\Delta MCD}\) (2)

(1);(2) \(\Rightarrow S_{\Delta NAD}=S_{\Delta MCD}\)

Từ D lần lượt kẻ \(DE\perp AN\) và \(DF\perp CM\)

\(\Rightarrow\left\{{}\begin{matrix}S_{\Delta NAD}=\dfrac{1}{2}DE.AN\\S_{\Delta MCD}=\dfrac{1}{2}DF.CM\end{matrix}\right.\)

Mà \(\left\{{}\begin{matrix}S_{\Delta NAD}=S_{\Delta MCD}\\AN=CM\end{matrix}\right.\) \(\Rightarrow DE=DF\)

\(\Rightarrow\Delta_VDEK=\Delta_VDFK\left(ch-cgv\right)\)

\(\Rightarrow\widehat{EKD}=\widehat{FKD}\) hay KD là phân giác

Bình luận (0)
NL
20 tháng 4 2023 lúc 8:49

loading...

Bình luận (0)

Các câu hỏi tương tự
NQ
Xem chi tiết
PT
Xem chi tiết
H24
Xem chi tiết
TT
Xem chi tiết
NT
Xem chi tiết
CD
Xem chi tiết
MA
Xem chi tiết
LN
Xem chi tiết
H24
Xem chi tiết