a: Xét ΔBMC vuông tại M và ΔDNC vuông tại N có
góc B=góc D
=>ΔBMC đồng dạng vớiΔDNC
b: Bạn ghi lại đề đi bạn
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
a: Xét ΔBMC vuông tại M và ΔDNC vuông tại N có
góc B=góc D
=>ΔBMC đồng dạng vớiΔDNC
b: Bạn ghi lại đề đi bạn
Cho hình bình hành ABCD có góc A tù. Kẻ BH và BK lần lượt vuông góc với đường thẳng AD và CD tại K. Kẻ CI vuông góc với BD tại I. Chứng minh DA.DH + DC.DK = DB.DB
Cho ABC có BM là trung tuyến. Gọi D là điểm đối xứng của B qua M .
a) Chứng minh: ABCD là hình bình hành.
b) Kẻ DH vuông góc AB tại H . Chứng minh DH vuông góc DC .
c) Kẻ BK vuông góc DC tại K . Chứng minh MH vuông góc MK.
Cho hình thang vuông ABCD có góc A= góc D= 900 , AB > CD. Kẻ AH vuông góc với BD tại H, AH cắt DC tại điểm E. a) Chứng minh AHD đồng dạng với BAD. b) Chứng minh hệ thức 2 AD AB.DE c) Biết AD = 3cm, AB = 4cm, tính độ dài đoạn DE và diện tích tứ giác ABED. d) Gọi N là hình chiếu của B lên đường thẳng CD, trên tia đối của tia EA lấy điểm M sao cho AE.EN = DE.EM. Chứng minh BE vuông góc với MD.
giúp mình câu a b c với
cho tam giác ABC có ba góc nhọn, trực tâm H đường thàgwr vuông góc với AB kẻ từ B cắt đường thẳng vuông góc với AC kẻ từ C tại D
chứng minh tứ giác BHCD là hình bình hành
gọi M là trung điểm BC O là trung điểm AD chứng minh 2OM = AH
Cho hình chữ nhật ABCD có AD = 6 cm, AB = 8 cm. Hai đường chéo AC và BD cắt nhau tại O. Qua D kẻ đường thẳng d vuông góc với BD, d cách tia BC tại E .
a) chứng minh rằng ∆BDE đồng dạng ∆DCE
b) kẻ CH vuông góc với DE tại H. Chứng minh rằng DC ²=CH.DB
c) K là giao điểm của OE và HC.Chứng minh K là trung điểm của HC và tính tỉ số diện tích của ∆EHC và diện tích ∆EDC
SOS!!!Mk đg cân gấp!!!mk làm đc câu ab r còn câu c thôi. Cảm ơn!
Bài 1: Cho tam giác ABC vuông tại A. Vẽ I,K lần lượt là trung điểm của AB,BC. Gọi D là điểm đối xứng của A qua K.
a. Chứng minh tứ giác ABDC là hình chữ nhật.
b. Gọi E là điểm đối xứng của K qua I. Chứng minh tứ giác AKBE là hình thoi.
c. Chứng minh tứ giác AEKC là hình bình hành.
d. Tìm điều kiện để hình thoi AKBE là hình vuông.
Bài 2: Cho tam gaics ABC vuông tại A, đường cao AH, trung tuyến AM. Gọi D là trung điểm AB, lấy điểm E đối xứng với M qua D.
a. Chứng minh: M và E đối xứng nhau qua AB.
b. Chứng minh: AMBE là hình thoi.
c. Kẻ HK vuông góc với AB tại K, HI vuông góc với AC tại I. Chứng minh IK vuông góc với AM
Bài 3: Cho tam giác ABC có ba góc nhọn, trực tâm H. Đường thẳng vuông góc với AB kẻ từ B cắt từ đường thẳng vuông góc từ AC kẻ từ C tại D.
a. Chứng minh tứ giác BHCD là hình bình hành.
b. Gọi M là trung điểm BC, O là trung điểm AD. Chứng minh 2OM = AH
Cho hình chữ nhật ABCD (AD <AB) . Hai đường chéo AC và BD cắt nhau tại O. Qua D kẻ đường thẳng vuông góc với BD cắt tia BC tại E .
a) Chứng minh tam giác BDE đồng dạng với tam giácDCE .
b) Kẻ CH vuông góc với DE tại H . Chứng minh rằng: 2 . DC CH DB = . Từ đó tính
độ dài CH biết AD = 6cm ; AB = 8cm.
c) Gọi K là giao điểm của OE và HC . Chứng minh:
HK /OD=EK/EO, từ đó suy ra: K là trung điểm của HC .
d) Chứng minh ba đường thẳng ,, OE. CD .BH đồng quy
Cho hình chữ nhật ABCD . Kẻ BH vuông góc với AC tại H , M là trung điểm của AH . Kẻ ME vuông góc với DC tại E, MF vuông góc với BC tại F
a) Chứng minh MC= EF
b) MF cắt BH ở I . Chứng minh CI vuông góc với MB
c) Gọi K là trung điểm của DC Chứng minh MICK là hình bình hành
d) Chứng minh BMI = EMK