HH

Cho hình chữ nhật ABCD có AD = 6 cm, AB = 8 cm. Hai đường chéo AC và BD cắt nhau tại O. Qua D kẻ đường thẳng d vuông góc với BD, d cách tia BC tại E .

a) chứng minh rằng ∆BDE đồng dạng ∆DCE

b) kẻ CH vuông góc với DE tại H. Chứng minh rằng DC ²=CH.DB

 c) K là giao điểm của OE và HC.Chứng minh K là trung điểm của HC và tính tỉ số diện tích của ∆EHC và diện tích ∆EDC

SOS!!!Mk đg cân gấp!!!mk làm đc câu ab r còn câu c thôi. Cảm ơn!

NT
2 tháng 3 2023 lúc 22:52

a: Xét ΔBDE vuông tại D và ΔDCE vuông tại C có

góc E chung

=>ΔBDE đồng dạng với ΔDCE

b: Xét ΔHDC vuông tại H và ΔDBE vuông tại D có

góc HDC=góc DBE

=>ΔHDC đồng dạng với ΔDBE

=>DH/DB=CH/DE

=>DH*DE=CB*CH=DC^2

c: DC^2=CH*DB

=>CH*10=8^2=64

=>CH=6,4cm

\(DH=\sqrt{8^2-6.4^2}=4.8\left(cm\right)\)

=>DE=8^2/4,8=40/3(cm)

=>CE=32/3(cm)

Xét ΔHCE vuông tại H và ΔCDE vuông tại C có

góc HEC chung

=>ΔHCE đồng dạng với ΔCDE

=>\(\dfrac{S_{HCE}}{S_{CDE}}=\left(\dfrac{CE}{DE}\right)^2=\left(\dfrac{32}{3}:\dfrac{40}{3}\right)^2=\left(\dfrac{4}{5}\right)^2=\dfrac{16}{25}\)

Bình luận (0)

Các câu hỏi tương tự
PK
Xem chi tiết
HQ
Xem chi tiết
K1
Xem chi tiết
NN
Xem chi tiết
PA
Xem chi tiết
NA
Xem chi tiết
NT
Xem chi tiết
NM
Xem chi tiết
NT
Xem chi tiết