a: Xét tứ giác AHCK có
AH//CK
AK//CH
=>AHCK là hình bình hành
b: ABCD là hình bình hành
=>O là trung điểm chung của AC và BD
AHCK là hình bình hành
=>AC cắt HK tại trung điểm của mỗi đường
=>O là trung điểm của HK
a: Xét tứ giác AHCK có
AH//CK
AK//CH
=>AHCK là hình bình hành
b: ABCD là hình bình hành
=>O là trung điểm chung của AC và BD
AHCK là hình bình hành
=>AC cắt HK tại trung điểm của mỗi đường
=>O là trung điểm của HK
Cho hình bình hành ABCD, đường chéo BD. Kẻ AH và CK vuông góc với BD ở H và ở K.
a) chứng minh tứ giác AHCK là hình bình hành
b) gọi O là trung điểm của HK
c/m 3 điểm A,O,C thẳng hàng
Cho hình bình hành ABCD, dựng AH, CK lần lượt vuông góc DB (H, K thuộc BD)
a) Chứng minh tứ giác AHCK là hình bình hành
b) Lấy O là trung điểm của HK. Chứng minh A, O, C thẳng hàng
c) Cho AH cắt CD tại I, CK cắt AB tại M. CMP: Tứ giác AMCI là hình bình hành
d) O trung điểm IM
Cho hình bình hành ABCD (AB > BC), gọi M và N lần lượt là trung điểm của AB và CD.
a) Chứng minh AN//MC
b) Từ A vẽ AH vuông góc với BD (H thuộc BD), từ C vẽ CK vuông góc với BD (K thuộc BD). Tứ giác AHCK là hình gì? Vì sao?
c) AH cắt CD tại E, CK cắt AB tại F. Gọi O là trung điểm của HK. Chứng minh E, O, F thẳng hàng
giúp em với ạ em đang cần gấp :<<
Cho ∆ABC, có 2 đường cao BM, CN cắt nhau tại H. Vẽ đường thẳng vuông góc với AB tại B và đường thẳng vuông góc với AC tại C, 2 đường thẳng này cắt nhau tại D
a) CMR: BHCD là hình bình hành
b) Gọi O là trung điểm của BC. CM: 3 điểm H,O,D thẳng hàng
c) CM: ∆OMN cân
d) Tìm điều kiện của ∆ABC để 3 điểm A,H,D thẳng hàng
Bài 1: Cho hình bình hành ABCD. Vẽ tia Bx vuông góc với AC, Dy vuông góc với AC. Đường thẳng qua A vuông góc với BD cắt Bx tại P, cắt Dy tại Q. Đường thẳng qua C vuông góc với BD cắt Bx tại N, cắt Dy tại M. Đường thẳng NQ cắt AD ở E, BC ở F. CMR: MNPQ, MEPF là hình bình hành.
Bài 2: Cho tứ giác ABCD có AD = BC, góc C và góc D tù. Gọi M, N, P, Q lần lượt là trung điểm AB, AC, CD, BD. MNPQ là hình gì? Chứng minh.
Cho hình bình hành ABCD, 2 đường chéo cắt nhau tại O. Kẻ AH vuông góc BD, CD vuông góc BD (AC ko vuông góc BD)
a) C/m tứ giác AHCK là hình bình hành
b)Biết AH cắt CD tại M, CK cắt AB tại N. C/m O là trung điểm của MN
Bài 1: Cho hình bình hành ABCD , đường chéo BD . Kẻ AH và CK vuông góc với BD tại H và K . Chứng minh tứ giác AHCK là hình bình hành. Bài 2: Cho hình bình hành ABCD có M N, lần lượt là trung điểm của AB CD , . AN và CM cắt BD lần lượt tại E và F . a) Chứng minh AMCN là hình bình hành. ( Hình 6) b) Từ F kẻ đường thẳng song song với AB cắt AN tại G. Chứng minh BF FE ED . Bài 3: Cho tam giác ABC cân tại A , lấy điểm D trên cạnh AB , điểm E trên cạnh AC sao cho BD CE . a) Tứ giác BDEC là hì gì? Vì sao? b) Các điểm D E, ở vị trí nào thì BD DE EC
Cho hình chữ nhật ABCD có M là trung điểm DC. Từ M vẽ đường thẳng vuông góc với DC cắt AB tại N. Gọi E, F lần lượt là trung điểm của AD,BC. Vẽ CH vuông góc bd tại H. I đối xứng với A qua H và J đối xứng với A qua DC. Chứng minh I,J,C thẳng hàng
cho hìh bih hành abcd (góc a lớn hơn 90 độ). vẽ ae vuông góc với bd tại e, ae cắt cd tại m, về cf vông góc với bd tại f, cf cắt ab tại n
a) CMR :AMCN là hình bình hành ?
b) CMR :AECF là hình bình hành
c) Cho O là trung điểm của MN. CM : O là trung điểm của BD ?