ND

Bài 1: Cho hình bình hành ABCD , đường chéo BD . Kẻ AH và CK vuông góc với BD tại H và K . Chứng minh tứ giác AHCK là hình bình hành. Bài 2: Cho hình bình hành ABCD có M N, lần lượt là trung điểm của AB CD , . AN và CM cắt BD lần lượt tại E và F . a) Chứng minh AMCN là hình bình hành. ( Hình 6) b) Từ F kẻ đường thẳng song song với AB cắt AN tại G. Chứng minh BF FE ED   . Bài 3: Cho tam giác ABC cân tại A , lấy điểm D trên cạnh AB , điểm E trên cạnh AC sao cho BD CE  . a) Tứ giác BDEC là hì gì? Vì sao? b) Các điểm D E, ở vị trí nào thì BD DE EC   

NT
14 tháng 12 2023 lúc 19:17

Bài 3:

a: Ta có: AD+DB=AB

AE+EC=AC

mà DB=EC và AB=AC

nên AD=AE

Xét ΔABC có \(\dfrac{AD}{AB}=\dfrac{AE}{AC}\)

nên DE//BC

Xét tứ giác BDEC có DE//BC

nên BDEC là hình thang

Hình thang BDEC có \(\widehat{DBC}=\widehat{ECB}\)

nên BDEC là hình thang cân

b: Để BD=DE=EC thì BD=DE và DE=EC

BD=DE thì ΔDBE cân tại D

=>\(\widehat{DBE}=\widehat{DEB}\)

mà \(\widehat{DEB}=\widehat{EBC}\)(hai góc so le trong, DE//BC)

nên \(\widehat{DBE}=\widehat{EBC}\)

=>\(\widehat{ABE}=\widehat{EBC}\)

=>BE là phân giác của góc ABC

=>E là chân đường phân giác kẻ từ B xuống AC

Xét ΔEDC có ED=EC

nên ΔEDC cân tại E

=>\(\widehat{EDC}=\widehat{ECD}\)

mà \(\widehat{EDC}=\widehat{DCB}\)(hai góc so le trong, DE//BC)

nên \(\widehat{ECD}=\widehat{DCB}\)

=>\(\widehat{ACD}=\widehat{BCD}\)

=>CD là phân giác của góc ACB

=>D là chân đường phân giác từ C kẻ xuống AB

Bài 2:

a: Ta có: ABCD là hình bình hành

=>AB//CD và AB=CD(1)

Ta có: M là trung điểm của AB

=>\(AM=MB=\dfrac{AB}{2}\left(2\right)\)

Ta có: N là trung điểm của CD

=>\(NC=ND=\dfrac{CD}{2}\left(3\right)\)

Từ (1),(2),(3) suy ra AM=MB=NC=ND

Xét tứ giác AMCN có 

AM//CN

AM=CN

Do đó: AMCN là hình bình hành

b: Ta có AMCN là hình bình hành

=>AN//CM

Xét ΔDFC có

N là trung điểm của DC

NE//FC

Do đó: E là trung điểm của DF

=>DE=EF(4)

Xét ΔABE có

M là trung điểm của BA

MF//AE

Do đó: F là trung điểm của BE

=>BF=FE(5)

Từ (4) và (5) suy ra BF=FE=ED

Bình luận (0)

Các câu hỏi tương tự
NF
Xem chi tiết
DN
Xem chi tiết
NK
Xem chi tiết
NL
Xem chi tiết
LP
Xem chi tiết
H24
Xem chi tiết
VL
Xem chi tiết
NC
Xem chi tiết
HN
Xem chi tiết