a: Xét ΔEAD và ΔFCB có
góc A=góc C
AD=CB
góc ADE=góc CBF(góc ADE=1/2*góc ADC=1/2*góc ABC=góc CBF)
Do đó; ΔEAD=ΔFCB
=>AE=CF
b: AE+EB=AB
CF+FD=CD
mà AB=CD và AE=CF
nên EB=FD
Xét tứ giác DEBF có
BE//FD
BE=FD
=>DEBF là hình bình hành
c: ABCD là hbh
=>AC cắt BD tại trung điểm của mỗi đường(1)
DEBF là hbh
=>DB cắt EF tại trung điểm của mỗi đường(2)
Từ (1), (2) suy ra AC,BD,EF đồng quy