H24

Cho hình bình hành ABCD (AB > BC). Tia phân giác của góc D cắt AB tại E, tia phân giác của góc B cắt CD tại F. CMR:

a) DE // BF

b) Tứ giác DEBF là hình gì?

c) Tam giác ADE = Tam giác CBF

d) C/m: Tứ giác AECF là hình bình hành

e) AC, DB, EF đồng quy

NT
15 tháng 8 2021 lúc 20:51

a: Ta có: \(\widehat{ADE}=\dfrac{\widehat{ADC}}{2}\)

\(\widehat{CBF}=\dfrac{\widehat{CBA}}{2}\)

mà \(\widehat{ADC}=\widehat{CBA}\)

nên \(\widehat{ADE}=\widehat{CBF}\)

Xét ΔADE và ΔCBF có 

\(\widehat{ADE}=\widehat{CBF}\)

AD=BC

\(\widehat{DAE}=\widehat{BCF}\)

Do đó: ΔADE=ΔCBF

Suy ra: AE=CF

Ta có: AE+EB=AB

CF+DF=CD

mà AB=CD

và AE=CF

nên EB=DF

Xét tứ giác DEBF có 

EB//DF

EB=DF

Do đó: DEBF là hình bình hành

Suy ra: DE//BF

d: Xét tứ giác AECF có 

AE//CF

AE=CF

Do đó: AECF là hình bình hành

Bình luận (0)
NT
15 tháng 8 2021 lúc 20:52

e: Ta có: ABCD là hình bình hành

nên Hai đường chéo AC và BD cắt nhau tại trung điểm của mỗi đường\(\left(1\right)\)

Ta có: EBFD là hình bình hành

nên Hai đường chéo EF và BD cắt nhau tại trung điểm của mỗi đường\(\left(2\right)\)

Từ \(\left(1\right),\left(2\right)\) suy ra AC,BD,EF đồng quy

Bình luận (0)

Các câu hỏi tương tự
TX
Xem chi tiết
NA
Xem chi tiết
TA
Xem chi tiết
PB
Xem chi tiết
TQ
Xem chi tiết
PB
Xem chi tiết
HA
Xem chi tiết
NH
Xem chi tiết
H24
Xem chi tiết