Ôn tập hệ hai phương trình bậc nhất hai ẩn

KC

cho hệ số :\(\left\{{}\begin{matrix}x+ay=2\\ax-y=1\end{matrix}\right.\)

tìm các giá trị của a để hệ phương trình trên có nghiệm x>0 , y>0

PT
16 tháng 1 2018 lúc 21:12

\(\left\{{}\begin{matrix}x+ay=2\\ax-y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2-ay\\a\left(2-ay\right)-y=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=2-ay\\2a-a^2y-y-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2-ay\\\left(-a^2-1\right)y+2a-1=0\left(.\right)\end{matrix}\right.\)

Hệ pt dã cho co nghiệm duy nhất khi pt (.) có nghiệm duy nhất

\(\Rightarrow-a^2-1\ne0\Leftrightarrow a^2\ne-1\)(luôn đúng)

Với mọi a(1) có

\(\Leftrightarrow\left\{{}\begin{matrix}x=2-ay\\y=\dfrac{1-2a}{-a^2-1}=\dfrac{2a-1}{a^2+1}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=2-\dfrac{a\left(2a-1\right)}{a^2+1}=\dfrac{a+2}{a^2+1}\\y=\dfrac{2a-1}{a^2+1}\end{matrix}\right.\)

Để x> 0 thì \(\dfrac{a+2}{a^2+1}>0\Rightarrow a+2>0\Leftrightarrow a>-2\left(2\right)\)

Để y>0 thì \(\dfrac{2a-1}{a^2+1}>0\Rightarrow2a-1>0\Leftrightarrow a>\dfrac{1}{2}\left(3\right)\)

Từ (1),(2),(3) -> với mọi a thỏa mãn a>1/2 thì hpt có nghiệm (x;y) sao cho x>0, y>0

Bình luận (0)

Các câu hỏi tương tự
TP
Xem chi tiết
NP
Xem chi tiết
NM
Xem chi tiết
JP
Xem chi tiết
SG
Xem chi tiết
MN
Xem chi tiết
NL
Xem chi tiết