Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
1) Cho tam giác ABC(AB>AC) AH vuông góc BC(H thuộc BC). D,E,Flần lượt là trung điểm AB,AC,BC.CMR:
a)DE là trung trực của AH
b)DEFH là hình thanh cân
2)Tứ giác ABCD(AD=BC).E,F lần lượt là trung điểm AB,CD.AD giao BC tại O. G,H lần lượt là giao E,F với OD,OC.CMR:OG=OH.
3)Tam giác ABC cân tại A,đường cao AH. D là chân đường vuông góc kẻ từ H đến AC,I là trung điểm HD.
a)M là trung điểm CD.CMR MI vuông góc AH
b)CMR:AI vuông góc BD
GIÚP MÌNH VỚI MAI ĐI HỌC RỒI !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
Bài 2: Cho hình bình hành ABCD có BC = 2AB . Gọi M là trung điểm AD. Kẻ CE vuông góc với AB ; E nằm giữa A và B . CMR: góc EMD = 3 góc AEM
Bìa 3: Cho tam giác ABC vuông tại A . Đường cao AH . Từ H kẻ HE , HF vuông góc với AB và AC . Kẻ AI vuông góc với EF ( I thuộc BC). CMR: a) I là trung điểm BC
b) Cho tam giác ABC vuông tại A. Đường cao AH. Gọi E, F lần lượt là các hình chiếu của H xuống AB, AC. Gọi I là trung điểm của BC. CMR: AI vuông góc với EF.
Bài 4: Cho tam giác ABC cân tại A . D bất kì thuộc BC . Qua D kẻ đường thẳng vuông góc với BC cắt AB và AC lần lượt tại E,F . Gọi I,K lần lượt là trung điểm của BE và CF .
a) CMR: AKDI là hình bình hành
b) Nêu thêm điều kiện của tam giác ABC và của điểm D để DIAK là hình vuông
Bai 1 : Cho hình bình hành ABCD ; góc BAD = 120 độ ; AB = 2 AD
a) CMR: Tia phân giác của góc ADC đi qua trung điểm E của AB .
b) Gọi F là trung điểm DC . CMR tam giác ADF đều và AD vuông góc với AC
Bài 2: Cho hình bình hành ABCD có BC = 2AB . Gọi M là trung điểm AD. Kẻ CE vuông góc với AB ; E nằm giữa A và B . CMR: góc EMD = 3 góc AEM
Bìa 3: Cho tam giác ABC vuông tại A . Đường cao AH . Từ H kẻ HE , HF vuông góc với AB và AC . Kẻ AI vuông góc với EF ( I \(\in\)BC). CMR: a) I là trung điểm BC
b) Cho tam giác ABC vuông tại A. Đường cao AH. Gọi E, F lần lượt là các hình chiếu của H xuống AB, AC. Gọi I là trung điểm của BC. CMR: AI vuông góc với EF.
Bài 4: Cho tam giác ABC cân tại A . D bất kì thuộc BC . Qua D kẻ đường thẳng vuông góc với BC cắt AB và AC lần lượt tại E,F . Gọi I,K lần lượt là trung điểm của BE và CF .
a) CMR: AKDI là hình bình hành
b) Nêu thêm điều kiện của tam giác ABC và của điểm D để DIAK là hình vuông
Cho tam giác ABC vuông tại A, đường cao AH. Gọi D,E lần lượt là hình chiếu của H trên AB, AC.
A. Chứng minh AH=DE
B.Gọi I, K lần lượt là trung điểm của HB,HC.Tứ giác DIKE là hình gì?
C. Gọi F là trung điểm của IK. Chứng minh tam giác FDE cân
D. Từ A kẻ đường thẳng vuông góc với DE, đường thẳng này cắt BC tại M. Chứng minh B đối xứng với C qua M.
Cho tam giác ABC vuông tại A; đường cao AH. Gọi K, D lần lượt là hình chiếu của H trên các cạnh AB, AC; I là trung điểm AH. C/m rằng a, Tứ giác AKHD là hcn b,K đối xứng với D qua I c, Gọi M là trung điểm BC. C/m góc BAH = góc CM d, C/m KD vuông góc AM e, Gọi E, F lần lượt là trung điểm BH và CK. C/m KE song song DF
Cho tam giác ABC vuông tại A, AH là đường cao ( H thuộc BC). Kẻ HE, HF lần lượt vuông góc với AB và AC (E thuộc AB, F thuộc AC).
a) Chứng minh AH = EF.
b) Gọi O là giao điểm của AH và EF, K là trung điểm của AC. Qua F kẻ đường thẳng vuông góc với EF cắt BC tại I.Chứng minh tứ giác AOIK là hình bình hành.
c) EF cắt IK tại M. Chứng minh tam giác OMI cân
cho tam giác ABC có A= 90 độ đường cao AH. gọi D và E lần lượt là hình chiếu của H trên AB và AC.
a.CM AH=DE
b.Từ A kẻ tia Ax sao cho Ax vuông góc với DE tại I và Ax cắt BC tại M. CM M là trung điểm của BC
Cho tam giác ABC vuông tại A (AB < AC). Kẻ AH vuông góc BC (H thuộc BC) . Gọi O, F lần lượt là trung điểm của AH, AC.
a) Chứng minh: HC = 2OF.
b) Qua H, lần lượt kẻ HE // AB (E thuộc AC) và HD // AC ( D thuộc AB).
Chứng minh: AEHD là hình chữ nhật.
c) Kẻ AK vuông góc OE (K thuộc OE ). Tia AK cắt BC tại M. Chứng minh: MF vuông góc AC
Cho hình chữ nhật ABDC (AB<AC) có AH là đường cao của tam giác ABC. Lấy điểm E đối xứng với A qua H. Gọi M và N lần lượt là hình chiếu của BD và CD lên điểm E.
Chứng minh ba điểm H, M, N thẳng hàng.Gọi K và P lần lượt là trung điểm của CH và BD. Đường thẳng vuông góc với AK tại K cắt AC tại Q. Chứng minh ba điểm K, Q, P thẳng hàng.Từ trung điểm L của cạnh BD vẽ LI vuông góc với BC tại I. Gọi F đối xứng D qua C. Đường thẳng vuông góc với DF tại F cắt LI tại O. Chứng minh O cách đều B và F.