a:
ta có: ABCD là hình bình hành
=>AB//CD
Ta có: AB//CD
K\(\in\)CD
Do đó: CK//AB
Xét ΔGAB có CK//AB
nên \(\dfrac{GC}{GB}=\dfrac{GK}{GA}\)
b:
ta có: ABCD là hình bình hành
=>BC//AD
Ta có: BC//AD
C\(\in\)BG
Do đó: BG//AD
=>\(\widehat{BGA}=\widehat{DAG}\)(hai góc so le trong)
Xét ΔBGA và ΔDAK có
\(\widehat{BGA}=\widehat{DAK}\)
\(\widehat{GBA}=\widehat{ADK}\)(ABCD là hình bình hành)
Do đó: ΔBGA đồng dạng với ΔDAK
=>\(\dfrac{BG}{DA}=\dfrac{GA}{AK}\)
=>\(\dfrac{AD}{AK}=\dfrac{BG}{GA}\)