H24

cho hbh ABCD, lấy K bất kì thuộc DC. Đường thẳng AK lần lượt cắt BC,BD tại G,I a, cm GC/GB=GK/GA B,CM AD/AK=BG/GA C, MC. GA=IK. MB

H24
13 tháng 12 2023 lúc 20:30

Trả lời nhanh nhé các ní, yêu mấy ní đang .....

Bình luận (0)
NT
13 tháng 12 2023 lúc 20:47

a: Xét ΔGAB có CK//AB

nên \(\dfrac{GC}{GB}=\dfrac{GK}{GA}\)

b: Xét ΔKAD và ΔKGC có

\(\widehat{KAD}=\widehat{KGC}\)(hai góc so le trong, AD//GC)

\(\widehat{AKD}=\widehat{GKC}\)(hai góc đối đỉnh)

Do đó: ΔKAD đồng dạng với ΔKGC

=>\(\dfrac{KA}{KG}=\dfrac{AD}{GC}\)

=>\(\dfrac{KA}{AD}=\dfrac{KG}{GC}\)

=>\(\dfrac{AD}{AK}=\dfrac{GC}{GK}\)

mà \(\dfrac{GC}{GK}=\dfrac{GB}{GA}\)(GC/GB=GK/GA)

nên \(\dfrac{AD}{AK}=\dfrac{BG}{GA}\)

 

Bình luận (1)

Các câu hỏi tương tự
NC
Xem chi tiết
MA
Xem chi tiết
CT
Xem chi tiết
VP
Xem chi tiết
VV
Xem chi tiết
KT
Xem chi tiết
H24
Xem chi tiết
PT
Xem chi tiết
NN
Xem chi tiết