\(\lim\limits_{x\rightarrow2}f\left(x\right)=\lim\limits_{x\rightarrow2}\dfrac{x^3-7x+6}{x^2-3x+2}=\lim\limits_{x\rightarrow2}\dfrac{\left(x-1\right)\left(x-2\right)\left(x+3\right)}{\left(x-1\right)\left(x-2\right)}=\lim\limits_{x\rightarrow2}\left(x+3\right)=5\)
\(f\left(2\right)=b-3\)
Hàm liên tục tại \(x=2\) khi \(\lim\limits_{x\rightarrow2}f\left(x\right)=f\left(2\right)\)
\(\Rightarrow b-3=5\Rightarrow b=8\)
b.
\(\lim\limits_{x\rightarrow1}f\left(x\right)=\lim\limits_{x\rightarrow1}\dfrac{x^3-7x+6}{x^2-3x+2}=\lim\limits_{x\rightarrow1}\dfrac{\left(x-1\right)\left(x-2\right)\left(x+3\right)}{\left(x-1\right)\left(x-2\right)}=\lim\limits_{x\rightarrow1}\left(x+3\right)=4\)
\(f\left(1\right)=2a\)
Hàm liên tục tại \(x=1\) khi \(\lim\limits_{x\rightarrow1}f\left(x\right)=f\left(1\right)\)
\(\Rightarrow2a=4\Rightarrow a=2\)
\(\Rightarrow a^2+b^2=8^2+2^2=68\)