Ôn tập chương 2: Hàm số bậc nhất

NA

Cho hai đường thẳng (d1): y=12x+5-m; (d2): y=3x+3+m. Xác định m để giao điểm của (d1) và (d2) thỏa mãn

a) Nằm trên trục tung

b) Nằm bên trái trục tung

c) Nằm trong góc phần tư thứ hai

AH
25 tháng 12 2018 lúc 23:41

Lời giải:

Phương trình hoành độ giao điểm:

\(12x+5-m=3x+3+m\)

\(\Leftrightarrow 9x=2m-2\Leftrightarrow x=\frac{2m-2}{9}\)

Khi đó: \(y=3x+3+m=3.\frac{2m-2}{9}+3+m=\frac{5m+7}{3}\)

Vậy giao điểm của \((d_1); (d_2)\)\(\left(\frac{2m-2}{9}; \frac{5m+7}{3}\right)\)

a)

Giao điểm nằm trên trục tung nghĩa là hoành độ bằng $0$

\(\Leftrightarrow \frac{2m-2}{9}=0\Rightarrow m=1\)

b)

Giao điểm nằm bên trái trục tung nghĩa là hoành độ âm

\(\Leftrightarrow \frac{2m-2}{9}< 0\Leftrightarrow m< 1\)

c)

Giao điểm nằm ở góc phần tư thứ 2 nghĩa là hoành độ âm, tung độ dương

\(\Leftrightarrow \left\{\begin{matrix} \frac{2m-2}{9}< 0\\ \frac{5m+7}{3}>0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} m< 1\\ m> -1,4\end{matrix}\right.\)

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
TV
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
LN
Xem chi tiết
H24
Xem chi tiết
TC
Xem chi tiết
H24
Xem chi tiết
GK
Xem chi tiết