LM

Cho hai biểu thức A=\(\dfrac{\sqrt{x}}{\sqrt{x+6}}\) và B=\(\dfrac{4}{x-1}+\dfrac{\sqrt{x}+3}{\sqrt{x}+1}-\dfrac{5}{1-\sqrt{x}}\)(với x≥0,x≠1)

a.tính giá trị biểu thức a khi x=4

b.rút gọn P

C.VỚI p=a.b ,tìm giá trị của x để p<0

 

NT
25 tháng 11 2023 lúc 22:35

a: Sửa đề: \(A=\dfrac{\sqrt{x}}{\sqrt{x}+6}\)

Khi x=4 thì \(A=\dfrac{\sqrt{4}}{\sqrt{4}+6}=\dfrac{2}{2+6}=\dfrac{2}{8}=\dfrac{1}{4}\)

b: \(B=\dfrac{4}{x-1}+\dfrac{\sqrt{x}+3}{\sqrt{x}+1}-\dfrac{5}{1-\sqrt{x}}\)

\(=\dfrac{4}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}+\dfrac{\sqrt{x}+3}{\sqrt{x}+1}+\dfrac{5}{\sqrt{x}-1}\)

\(=\dfrac{4+\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)+5\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(=\dfrac{4+x+2\sqrt{x}-3+5\sqrt{x}+5}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(=\dfrac{x+7\sqrt{x}+6}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{x}+6\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(=\dfrac{\sqrt{x}+6}{\sqrt{x}-1}\)

c: \(P=A\cdot B=\dfrac{\sqrt{x}+6}{\sqrt{x}-1}\cdot\dfrac{\sqrt{x}}{\sqrt{x}+6}=\dfrac{\sqrt{x}}{\sqrt{x}-1}\)

Để P<0 thì \(\dfrac{\sqrt{x}}{\sqrt{x}-1}< 0\)

mà \(\sqrt{x}>0\)

nên \(\sqrt{x}-1< 0\)

=>\(\sqrt{x}< 1\)

=>0<=x<1

Bình luận (1)

Các câu hỏi tương tự
LM
Xem chi tiết
TK
Xem chi tiết
LM
Xem chi tiết
LP
Xem chi tiết
LM
Xem chi tiết
LM
Xem chi tiết
H24
Xem chi tiết
MB
Xem chi tiết
2S
Xem chi tiết