Ôn tập: Phương trình bâc nhất một ẩn

SK

Cho hai biểu thức :

                         \(A=\dfrac{5}{2m+1}\)     và            \(B=\dfrac{4}{2m-1}\)

Hãy tìm các giá trị của \(m\) để hai biểu thức  ấy có giá trị thỏa mãn hệ thức :

a) \(2A+3B=0\)

b) \(AB=A+B\)

MP
17 tháng 8 2017 lúc 14:57

a) ta có : \(2A+3B=0\) \(\Leftrightarrow2.\dfrac{5}{2m+1}+3.\dfrac{4}{2m-1}=0\)

\(\Leftrightarrow\dfrac{10}{2m+1}+\dfrac{12}{2m-1}=0\Leftrightarrow\dfrac{10\left(2m-1\right)+12\left(2m+1\right)}{\left(2m+1\right)\left(2m-1\right)}=0\)

\(\Leftrightarrow\dfrac{20m-10+24m+12}{4m^2-1}=0\Leftrightarrow\dfrac{44m+2}{4m^2-1}=0\)

\(\Leftrightarrow44m+2=0\Leftrightarrow44m=-2\Leftrightarrow m=\dfrac{-2}{44}=\dfrac{-1}{22}\) vậy \(m=\dfrac{-1}{22}\)

b) ta có : \(AB=\dfrac{5}{2m+1}.\dfrac{4}{2m-1}=\dfrac{5.4}{\left(2m+1\right)\left(2m-1\right)}\)

ta có : \(A+B=\dfrac{5}{2m+1}+\dfrac{4}{2m-1}=\dfrac{5\left(2m-1\right)+4\left(2m+1\right)}{\left(2m+1\right)\left(2m-1\right)}\)

\(\Rightarrow AB=A+B\Leftrightarrow\dfrac{5.4}{\left(2m+1\right)\left(2m-1\right)}=\dfrac{5\left(2m-1\right)+4\left(2m+1\right)}{\left(2m+1\right)\left(2m-1\right)}\)

\(\Leftrightarrow5.4=5\left(2m-1\right)+4\left(2m+1\right)\Leftrightarrow20=10m-5+8m+4\)

\(\Leftrightarrow20=18m-1\Leftrightarrow18m=20+1=21\Leftrightarrow m=\dfrac{21}{18}=\dfrac{7}{6}\) vậy \(m=\dfrac{7}{6}\)

Bình luận (0)

Các câu hỏi tương tự
TL
Xem chi tiết
CA
Xem chi tiết
CN
Xem chi tiết
NL
Xem chi tiết
DL
Xem chi tiết
CA
Xem chi tiết
TT
Xem chi tiết
HV
Xem chi tiết
L2
Xem chi tiết