Bài 3: Đạo hàm của hàm số lượng giác

NA

Cho \(f\left(x\right)=\sin^2ax.\cos bx\). Tìm \(f^{\left(n\right)}\left(x\right)\)

NB
7 tháng 5 2016 lúc 20:56

Ta có : \(f\left(x\right)=\frac{1-\cos2ax}{2}.\cos bx=\frac{1}{2}\cos bx-\frac{1}{2}\cos2ax.\cos bx\)

                    \(=\frac{1}{2}\cos bx-\frac{\cos\left(2a+b\right)x+\cos\left(2a-b\right)x}{4}\)

                    \(=\frac{1}{2}\cos bx-\frac{1}{4}\cos\left(2a+b\right)x-\frac{1}{4}\cos\left(2a-b\right)x\)

\(f^{\left(n\right)}\left(x\right)=\frac{1}{2}.b^n\cos\left(bx+\frac{b\pi}{2}\right)-\frac{1}{4}\left(2a+b\right)^n\cos\left[\left(2a+b\right)x+\frac{n\pi}{2}\right]-\frac{1}{4}\left(2a-b\right)^n\cos\left[\left(2a-b\right)x+\frac{n\pi}{2}\right]\)

Áp dụng : Khi a=1,b=2 tức là nếu \(f\left(x\right)=\sin^2x\cos2x\) ta có :

\(f^{\left(n\right)}\left(x\right)=\frac{1}{2}.2^n\cos\left(2x+\frac{n\pi}{2}\right)-\frac{1}{4}.4^n\cos\left(4x+\frac{n\pi}{2}\right)\)

            \(=2^{n-1}\cos\left(2x+\frac{n\pi}{2}\right)-4^{n-1}\cos\left(4x+\frac{n\pi}{2}\right)\)

Bình luận (0)

Các câu hỏi tương tự
SK
Xem chi tiết
SK
Xem chi tiết
SK
Xem chi tiết
SK
Xem chi tiết
PB
Xem chi tiết
SK
Xem chi tiết
SK
Xem chi tiết
LN
Xem chi tiết
SK
Xem chi tiết