H24

cho (d):y=-x+3

a. Gọi A, B là giao điểm của (d) với 2 trục tọa độ Ox, Oy. Tính diện tích tam giác AOB

b. Cho (d1):y=(k+1)x+1 (k tham số). Tìm giá trị nguyên của k để 2 đường thẳng (d) và (d1) cắt nhau ở điểm có hoành độ là số nguyên nhỏ nhất

NT
13 tháng 12 2023 lúc 20:28

a: Tọa độ A là;

\(\left\{{}\begin{matrix}y=0\\-x+3=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y=0\\-x=-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=0\end{matrix}\right.\)

Vậy: A(3;0)

Tọa độ B là:

\(\left\{{}\begin{matrix}x=0\\y=-x+3=-0+3=3\end{matrix}\right.\)

Vậy: B(0;3)

O(0;0); A(3;0); B(0;3)

\(OA=\sqrt{\left(3-0\right)^2+\left(0-0\right)^2}=3\)

\(OB=\sqrt{\left(0-0\right)^2+\left(3-0\right)^2}=\sqrt{0^2+3^2}=3\)

Vì Ox\(\perp\)Oy

nên OA\(\perp\)OB

=>ΔOAB vuông tại O

=>\(S_{OAB}=\dfrac{1}{2}\cdot OA\cdot OB=\dfrac{9}{2}\)

b:

Để (d1) cắt (d2) thì k+1<>-1

=>k<>-2

Phương trình hoành độ giao điểm là:

(k+1)x+1=-x+3

=>(k+1)x+x=2

=>x(k+2)=2

=>\(x=\dfrac{2}{k+2}\)

Để hoành độ là số nguyên nhỏ nhất thì \(\dfrac{2}{k+2}\) là số nguyên nhỏ nhất có thể

=>k+2=-1

=>k=-3

Bình luận (0)

Các câu hỏi tương tự
HT
Xem chi tiết
MS
Xem chi tiết
H24
Xem chi tiết
TD
Xem chi tiết
TD
Xem chi tiết
ND
Xem chi tiết
MB
Xem chi tiết
MB
Xem chi tiết
H24
Xem chi tiết