ML

Cho đường tròn tâm O và điểm M nằm ngoài đường tròn , vẽ các tiếp tuyến MA,MB  với đường tròn (O) ,(AB là các tiếp điểm ) và cát tuyến MCD không đi qua tâm O(MC,<MD, A và O nằm khác phía có bờ la CD ),gọi I là trung điểm của CD

a. Chứng minh 5 điểm M,A,I,O,B cùng thuộc một đường tròn

b. Chứng minh MA2= MC.MD

NT
13 tháng 2 2023 lúc 23:55

a: ΔOCD can tại O

mà OI là trung tuyến

nên OI vuông góc CD

Xét tứ giác OAMB có

góc OAM+góc OBM=180 độ

=>OAMB là tứ giác nội tiếp

=>O,A,M,B cùng thuộc 1 đường tròn đường kính OM(1)

Vì ΔOIM vuông tại I

nên I nằm trên đường tròn đường kính OM(2)

Từ (1), (2) suy ra ĐPCM

b: Xét ΔMAC và ΔMDA có

góc MAC=góc MDA

góc AMC chung

=>ΔMAC đồng dạng vơi ΔMDA

=>MA/MD=MC/MA

=>MA^2=MD*MC

Bình luận (0)

Các câu hỏi tương tự
NH
Xem chi tiết
TV
Xem chi tiết
BH
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
NT
Xem chi tiết