Ta có: \(OB=OC=R\) ; \(AB=AC\) (t/c hai tiếp tuyến cắt nhau)
\(\Rightarrow OA\) là trung trực của BC
\(\Rightarrow OA\) là phân giác góc \(\widehat{BAC}\) (1)
Mặt khác I thuộc OA \(\Rightarrow IB=IC\Rightarrow\Delta IBC\) cân tại I
\(\Rightarrow\widehat{CBI}=\widehat{BCI}\)
Mà \(\widehat{BCI}=\widehat{ABI}\) (góc nội tiếp và góc tiếp tuyến cùng chắn cung BI)
\(\Rightarrow\widehat{CBI}=\widehat{ABI}\Rightarrow BI\) là phân giác \(\widehat{ABC}\) (2)
(1);(2) \(\Rightarrow I\) là tâm đường tròn nội tiếp tam giác ABC