QN

cho đường tròn tâm O bán kính R 2 tiếp tuyến tại A và B của đường tròn cắt nhau tại điểm M đoạn thẳng OM cắt đường tròn (O) tại điểm I , cắt AB tại điểm K a)chứng minh 4 điểm M,A,O,B cùng thuộc đường tròn b)chứng minh OM.OK=R^2 và điểm I là tâm đường tròn nội tiếp tam giác MAB

NT
31 tháng 12 2023 lúc 20:49

a: Xét tứ giác MAOB có \(\widehat{MAO}+\widehat{MBO}=90^0+90^0=180^0\)

nên MAOB là tứ giác nội tiếp

=>M,A,O,B cùng thuộc một đường tròn

b: Xét (O) có

MA,MB là các tiếp tuyến

Do đó: MA=MB

=>M nằm trên đường trung trực của AB(1)

Ta có: OA=OB

=>O nằm trên đường trung trực của AB(2)

Từ (1) và (2) suy ra MO là đường trung trực của AB

=>MO\(\perp\)AB tại K

Xét ΔOAM vuông tại A có AK là đường cao

nên \(OK\cdot OM=OA^2=R^2\)

Ta có: \(\widehat{MAI}+\widehat{OAI}=\widehat{MAO}=90^0\)

\(\widehat{KAI}+\widehat{OIA}=90^0\)(ΔAKI vuông tại K)

mà \(\widehat{OAI}=\widehat{OIA}\)

nên \(\widehat{MAI}=\widehat{KAI}\)

=>AI là phân giác của góc MAB

Xét (O) có

MA,MB là các tiếp tuyến

Do đó: MO là phân giác của góc AMB

=>MK là phân giác của góc AMB

Xét ΔMAB có

MK,AI là các đường phân giác

MK cắt AI tại I

Do đó: I là tâm đường tròn nội tiếp ΔMAB

Bình luận (0)

Các câu hỏi tương tự
MA
Xem chi tiết
PN
Xem chi tiết
NT
Xem chi tiết
VT
Xem chi tiết
NH
Xem chi tiết
MP
Xem chi tiết
HQ
Xem chi tiết
NV
Xem chi tiết
NQ
Xem chi tiết