Chương II - Đường tròn

NK

Cho đường tròn tâm O bán kính R và một điểm M nằm ngoài đường tròn. Qua M kẻ tiếp tuyến MA với đường tròn (A là tiếp điểm). Tia Mx nằm giữa MA và MO cắt đường tròn (O; R) tại hai điểm C và D (C năm giữa M và D). Gọi I là trung điểm của dây CD, kẻ AH vuông góc với MO tại H.

a/ Tính OH. OM theo R.

b/ Chứng minh: Bốn điểm M, A, I, O cùng thuộc một đường tròn.

c/ Gọi K là giao điểm của OI với HA. Chứng minh KC là tiếp tuyến của đường tròn (O)

NT
1 tháng 1 2022 lúc 19:57

b: Xét tứ giác MAIO có 

\(\widehat{OIM}=\widehat{OAM}=90^0\)

Do đó: MAIO là tứ giác nội tiếp

Bình luận (0)
NT
7 tháng 12 2022 lúc 23:45

a: OH*OM=OA^2=R^2

b: ΔOCD cân tại O

mà OI là đường trung tuyến

nên OI vuông góc với CD

Xét tứ giác OIAM có

góc OIM=góc OAM=90 độ

nên OIAM là tứ giác nội tiếp

c: Xét ΔOHK vuông tại H và ΔOIM vuông tại I có

góc HOK chung

Do đo: ΔOHK đồng dạng với ΔOIM

=>OH/OI=OK/OM

=>OI*OK=OH*OM=R^2=OC^2

mà CI vuông góc với OK

nên ΔOCK vuông tại C

=>KC là tiếp tuyến của (O)

Bình luận (0)

Các câu hỏi tương tự
TK
Xem chi tiết
3M
Xem chi tiết
BA
Xem chi tiết
HP
Xem chi tiết
BN
Xem chi tiết
NM
Xem chi tiết
H24
Xem chi tiết
DV
Xem chi tiết
NA
Xem chi tiết