Chương II - Đường tròn

NQ

Cho (O, R) và M nằm ngoài đường tròn (0) sao cho OM = 2R. Kẻ MA, MB là hai tiếp tuyến với (O) ( A, B là tiếp điểm). Gọi H là giao điểm của OM với AB. 1) Chứng minh: OM vuông góc AB tại H. 2) Chứng minh: MH • MO = 3R^2 3) Chứng minh: tam giác MAB là tam giác đều. 4) MO cắt (O) lần lượt tại I và K (I nằm giữa M và K ). Chứng minh: AI là phân giác của MAH và MH • MO = MI • MK.

NT
14 tháng 12 2023 lúc 19:43

1: Xét (O) có

MA,MB là các tiếp tuyến

Do đó:MA=MB

=>M nằm trên đường trung trực của AB(1)

Ta có: OA=OB

=>O nằm trên đường trung trực của AB(2)

Từ (1) và (2) suy ra MO là đường trung trực của AB

=>MO\(\perp\)AB tại H và H là trung điểm của AB

2: Ta có: ΔOAM vuông tại A

=>\(AO^2+AM^2=OM^2\)

=>\(AM^2=\left(2R\right)^2-R^2=3R^2\)

Xét ΔAMO vuông tại A có AH là đường cao

nên \(MH\cdot MO=MA^2\)

=>\(MH\cdot MO=3R^2\)

3:

Xét ΔOAM vuông tại A có \(sinAMO=\dfrac{OA}{OM}=\dfrac{1}{2}\)

nên \(\widehat{AMO}=30^0\)

Xét (O) có

MA,MB là các tiếp tuyến

Do đó: MO là phân giác của góc AMB

=>\(\widehat{AMB}=2\cdot\widehat{AMO}=2\cdot30^0=60^0\)

Xét ΔMAB có MA=MB và \(\widehat{AMB}=60^0\)

nên ΔMAB đều

4: Xét (O) có

\(\widehat{MAI}\) là góc tạo bởi tiếp tuyến AM và dây cung AI

\(\widehat{IKA}\) là góc nội tiếp chắn cung AI

Do đó: \(\widehat{MAI}=\widehat{IKA}\)

Xét ΔMAI và ΔMKA có

\(\widehat{MAI}=\widehat{MKA}\)

\(\widehat{AMI}\) chung

Do đó: ΔMAI đồng dạng với ΔMKA

=>\(\dfrac{MA}{MK}=\dfrac{MI}{MA}\)

=>\(MA^2=MI\cdot MK\)

mà \(MA^2=MH\cdot MO\)

nên \(MI\cdot MK=MH\cdot MO\)

Ta có: \(\widehat{MAI}+\widehat{OAI}=\widehat{OAM}=90^0\)

\(\widehat{HAI}+\widehat{OIA}=90^0\)(ΔAHI vuông tại H)

mà \(\widehat{OAI}=\widehat{OIA}\)(ΔOAI cân tại O)

nên \(\widehat{MAI}=\widehat{HAI}\)

=>AI là phân giác của góc MAH

Bình luận (0)

Các câu hỏi tương tự
3M
Xem chi tiết
H24
Xem chi tiết
MN
Xem chi tiết
TK
Xem chi tiết
NM
Xem chi tiết
BN
Xem chi tiết
HP
Xem chi tiết
MT
Xem chi tiết
KL
Xem chi tiết