TT

Cho đường tròn (O;R), đường kính AB. Lấy C thuộc đường tròn (O;R) sao cho AC > BC. Kẻ đường cao CH của tam giác ABC (H ∈ AB), kéo dài CH cắt (O;R) tại điểm D (D khác C). Tiếp tuyến tại điểm A và tiếp tuyến tại điểm C của đường tròn (O,R) cắt nhau tại điểm M. Gọi I là giao điểm của OM và AC. a) Chứng minh bốn điểm M,A,O,C cùng thuộc đường tròn đường kính OM . b) Hai đường tháng MC và AB cắt nhau tại F. Chứng minh BC =2.IO và DF là tiếp tuyến của (O; R). c. Chứng minh AF.BE=BF.AH Mọi người giúp em với, em cảm ơn ạ

NT
12 tháng 1 2023 lúc 1:01

a: Xét tứ giácc MAOC có

góc MAO+góc MCO=180 độ

nên MAOC là tứ giác nội tiếp

b: Xét (O) có

MA,MC là tiếp tuyến

nên MA=MC

mà OA=OC

nên OM là trung trực của AC

=>I là trung điểm của AC

Xét ΔABC có AO/AB=AI/AC

nên OI//BC và OI=1/2BC

Bình luận (0)

Các câu hỏi tương tự
BC
Xem chi tiết
BT
Xem chi tiết
TA
Xem chi tiết
TN
Xem chi tiết
NN
Xem chi tiết
KH
Xem chi tiết
TN
Xem chi tiết
HT
Xem chi tiết
H24
Xem chi tiết